- (i) Differentiate \(y = 5 x ^ { 2 } \ln 3 x , \quad x > 0\)
(ii) Given that
$$y = \frac { x } { \sin x + \cos x } , \quad - \frac { \pi } { 4 } < x < \frac { 3 \pi } { 4 }$$
show that
$$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { ( 1 + x ) \sin x + ( 1 - x ) \cos x } { 1 + \sin 2 x } , \quad - \frac { \pi } { 4 } < x < \frac { 3 \pi } { 4 }$$
\includegraphics[max width=\textwidth, alt={}, center]{e30f0c28-1695-40a1-8e9a-6ea7e29042bf-11_99_104_2631_1781}