Edexcel C34 2017 January — Question 12

Exam BoardEdexcel
ModuleC34 (Core Mathematics 3 & 4)
Year2017
SessionJanuary
TopicDifferential equations

  1. In freezing temperatures, ice forms on the surface of the water in a barrel. At time \(t\) hours after the start of freezing, the thickness of the ice formed is \(x \mathrm {~mm}\). You may assume that the thickness of the ice is uniform across the surface of the water.
At 4 pm there is no ice on the surface, and freezing begins.
At 6pm, after two hours of freezing, the ice is 1.5 mm thick.
In a simple model, the rate of increase of \(x\), in mm per hour, is assumed to be constant for a period of 20 hours. Using this simple model,
  1. express \(t\) in terms of \(x\),
  2. find the value of \(t\) when \(x = 3\) In a second model, the rate of increase of \(x\), in mm per hour, is given by the differential equation $$\frac { \mathrm { d } x } { \mathrm {~d} t } = \frac { \lambda } { ( 2 x + 1 ) } \text { where } \lambda \text { is a constant and } 0 \leqslant t \leqslant 20$$ Using this second model,
  3. solve the differential equation and express \(t\) in terms of \(x\) and \(\lambda\),
  4. find the exact value for \(\lambda\),
  5. find at what time the ice is predicted to be 3 mm thick.