Edexcel C12 Specimen — Question 13

Exam BoardEdexcel
ModuleC12 (Core Mathematics 1 & 2)
SessionSpecimen
TopicDifferentiation Applications
TypeOptimization with constraints

13. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{1528bec3-7a7a-42c5-bac2-756ff3493818-28_374_410_278_776} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} Figure 3 shows a flowerbed. Its shape is a quarter of a circle of radius \(x\) metres with two equal rectangles attached to it along its radii. Each rectangle has length equal to \(x\) metres and width equal to \(y\) metres. Given that the area of the flowerbed is \(4 \mathrm {~m} ^ { 2 }\),
  1. show that $$y = \frac { 16 - \pi x ^ { 2 } } { 8 x }$$
  2. Hence show that the perimeter \(P\) metres of the flowerbed is given by the equation $$P = \frac { 8 } { x } + 2 x$$
  3. Use calculus to find the minimum value of \(P\).