Edexcel C12 (Core Mathematics 1 & 2) Specimen

Question 1
View details
Simplify fully
  1. \(\left( 25 x ^ { 4 } \right) ^ { \frac { 1 } { 2 } }\),
  2. \(\left( 25 x ^ { 4 } \right) ^ { - \frac { 3 } { 2 } }\).
Question 2
View details
Find the first 3 terms, in ascending powers of \(x\), of the binomial expansion of $$( 3 - x ) ^ { 6 }$$ and simplify each term.
Question 3
View details
3. Answer this question without the use of a calculator and show all your working.
  1. Show that $$( 5 - \sqrt { 8 } ) ( 1 + \sqrt { 2 } ) \equiv a + b \sqrt { 2 }$$ giving the values of the integers \(a\) and \(b\).
  2. Show that $$\sqrt { 80 } + \frac { 30 } { \sqrt { 5 } } \equiv c \sqrt { 5 } , \text { where } c \text { is an integer. }$$
Question 4
View details
4. Given that \(y = 2 x ^ { 5 } + 7 + \frac { 1 } { x ^ { 3 } } , x \neq 0\), find, in their simplest form,
  1. \(\frac { \mathrm { d } y } { \mathrm {~d} x }\),
  2. \(\int y \mathrm {~d} x\).
Question 5
View details
5. $$y = \frac { 5 } { 3 x ^ { 2 } - 2 }$$ The table below gives values of \(y\) rounded to 3 decimal places where necessary.
\(x\)22.252.52.753
\(y\)0.50.3790.2990.2420.2
Use the trapezium rule, with all the values of \(y\) from the table above, to find an approximate value for $$\int _ { 2 } ^ { 3 } \frac { 5 } { 3 x ^ { 2 } - 2 } d x$$ © Pearson Education Limited 2013
Sample Assessment Materials
Question 6
View details
6. $$\mathrm { f } ( x ) = x ^ { 4 } + x ^ { 3 } + 2 x ^ { 2 } + a x + b ,$$ where \(a\) and \(b\) are constants. When \(\mathrm { f } ( x )\) is divided by \(( x - 1 )\), the remainder is 7
  1. Show that \(a + b = 3\) When \(\mathrm { f } ( x )\) is divided by ( \(x + 2\) ), the remainder is - 8
  2. Find the value of \(a\) and the value of \(b\).
Question 7
View details
7. A sequence \(a _ { 1 } , a _ { 2 } , a _ { 3 } , \ldots\) is defined by $$\begin{gathered} a _ { 1 } = 2
a _ { n + 1 } = 3 a _ { n } - c \end{gathered}$$ where \(c\) is a constant.
  1. Find an expression for \(a _ { 2 }\) in terms of \(c\). Given that \(\sum _ { i = 1 } ^ { 3 } a _ { i } = 0\)
  2. find the value of \(c\).
Question 8
View details
8. The equation $$( k + 3 ) x ^ { 2 } + 6 x + k = 5 , \text { where } k \text { is a constant, }$$ has two distinct real solutions for \(x\).
  1. Show that \(k\) satisfies $$k ^ { 2 } - 2 k - 24 < 0$$
  2. Hence find the set of possible values of \(k\).
Question 9
View details
9. Given that \(y = 3 x ^ { 2 }\),
  1. show that \(\log _ { 3 } y = 1 + 2 \log _ { 3 } x\)
  2. Hence, or otherwise, solve the equation $$1 + 2 \log _ { 3 } x = \log _ { 3 } ( 28 x - 9 )$$
Question 10
View details
10. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{1528bec3-7a7a-42c5-bac2-756ff3493818-18_508_812_306_644} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of the curve \(C\) with equation \(y = \mathrm { f } ( x )\), where $$f ( x ) = x ^ { 2 } ( 9 - 2 x ) .$$ There is a minimum at the origin, a maximum at the point \(( 3,27 )\) and \(C\) cuts the \(x\)-axis at the point \(A\).
  1. Write down the coordinates of the point \(A\).
  2. On separate diagrams sketch the curve with equation
    1. \(y = \mathrm { f } ( x + 3 )\),
    2. \(y = \mathrm { f } ( 3 x )\). On each sketch you should indicate clearly the coordinates of the maximum point and any points where the curves cross or meet the coordinate axes. The curve with equation \(y = \mathrm { f } ( x ) + k\), where \(k\) is a constant, has a maximum point at \(( 3,10 )\).
  3. Write down the value of \(k\).
Question 11
View details
11. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{1528bec3-7a7a-42c5-bac2-756ff3493818-22_337_892_278_639} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} The straight line with equation \(y = x + 4\) cuts the curve with equation \(y = - x ^ { 2 } + 2 x + 24\) at the points \(A\) and \(B\), as shown in Figure 2.
  1. Use algebra to find the coordinates of the points \(A\) and \(B\). The finite region \(R\) is bounded by the straight line and the curve and is shown shaded in Figure 2.
  2. Use calculus to find the exact area of \(R\).
Question 12
View details
12. The circle \(C\) has centre \(A ( 2,1 )\) and passes through the point \(B ( 10,7 )\)
  1. Find an equation for \(C\). The line \(l _ { 1 }\) is the tangent to \(C\) at the point \(B\).
  2. Find an equation for \(l _ { 1 }\) The line \(l _ { 2 }\) is parallel to \(l _ { 1 }\) and passes through the mid-point of \(A B\).
    Given that \(l _ { 2 }\) intersects \(C\) at the points \(P\) and \(Q\),
  3. find the length of \(P Q\), giving your answer in its simplest surd form.
Question 13
View details
13. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{1528bec3-7a7a-42c5-bac2-756ff3493818-28_374_410_278_776} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} Figure 3 shows a flowerbed. Its shape is a quarter of a circle of radius \(x\) metres with two equal rectangles attached to it along its radii. Each rectangle has length equal to \(x\) metres and width equal to \(y\) metres. Given that the area of the flowerbed is \(4 \mathrm {~m} ^ { 2 }\),
  1. show that $$y = \frac { 16 - \pi x ^ { 2 } } { 8 x }$$
  2. Hence show that the perimeter \(P\) metres of the flowerbed is given by the equation $$P = \frac { 8 } { x } + 2 x$$
  3. Use calculus to find the minimum value of \(P\).
Question 14
View details
  1. In this question you must show all stages of your working. (Solutions based entirely on graphical or numerical methods are not acceptable.)
    1. Solve for \(0 \leqslant x < 360 ^ { \circ }\), giving your answers in degrees to 1 decimal place,
    $$3 \sin \left( x + 45 ^ { \circ } \right) = 2$$
  2. Find, for \(0 \leqslant x < 2 \pi\), all the solutions of $$2 \sin ^ { 2 } x + 2 = 7 \cos x$$ giving your answers in radians.
    \includegraphics[max width=\textwidth, alt={}, center]{1528bec3-7a7a-42c5-bac2-756ff3493818-35_108_95_2572_1804}
Question 15
View details
15. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{1528bec3-7a7a-42c5-bac2-756ff3493818-36_394_608_287_676} \captionsetup{labelformat=empty} \caption{Figure 4}
\end{figure} The triangle \(X Y Z\) in Figure 4 has \(X Y = 6 \mathrm {~cm} , Y Z = 9 \mathrm {~cm} , Z X = 4 \mathrm {~cm}\) and angle \(Z X Y = \alpha\). The point \(W\) lies on the line \(X Y\). The circular arc \(Z W\), in Figure 4 is a major arc of the circle with centre \(X\) and radius 4 cm .
  1. Show that, to 3 significant figures, \(\alpha = 2.22\) radians.
  2. Find the area, in \(\mathrm { cm } ^ { 2 }\), of the major sector \(X Z W X\). The region enclosed by the major arc \(Z W\) of the circle and the lines \(W Y\) and \(Y Z\) is shown shaded in Figure 4. Calculate
  3. the area of this shaded region,
  4. the perimeter \(Z W Y Z\) of this shaded region.
    \includegraphics[max width=\textwidth, alt={}, center]{1528bec3-7a7a-42c5-bac2-756ff3493818-39_90_54_2576_1868}
Question 16
View details
16. Maria trains for a triathlon, which involves swimming, cycling and running. On the first day of training she swims 1.5 km and then she swims 1.5 km on each of the following days.
  1. Find the total distance that Maria swims in the first 17 days of training. Maria also runs 1.5 km on the first day of training and on each of the following days she runs 0.25 km further than on the previous day. So she runs 1.75 km on the second day and 2 km on the third day and so on.
  2. Find how far Maria runs on the 17th day of training. Maria also cycles 1.5 km on the first day of training and on each of the following days she cycles \(5 \%\) further than on the previous day.
  3. Find the total distance that Maria cycles in the first 17 days of training.
  4. Find the total distance Maria travels by swimming, running and cycling in the first 17 days of training. Maria needs to cycle 40 km in the triathlon.
  5. On which day of training does Maria first cycle more than 40 km ?