Edexcel C12 2014 January — Question 13

Exam BoardEdexcel
ModuleC12 (Core Mathematics 1 & 2)
Year2014
SessionJanuary
TopicDifferentiation Applications
TypeDifferentiate rational functions

13. The curve \(C\) has equation $$y = \frac { ( x - 3 ) ( 3 x - 25 ) } { x } , \quad x > 0$$
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in a fully simplified form.
  2. Hence find the coordinates of the turning point on the curve \(C\).
  3. Determine whether this turning point is a minimum or maximum, justifying your answer. The point \(P\), with \(x\) coordinate \(2 \frac { 1 } { 2 }\), lies on the curve \(C\).
  4. Find the equation of the normal at \(P\), in the form \(a x + b y + c = 0\), where \(a\), b and \(c\) are integers.
    \includegraphics[max width=\textwidth, alt={}, center]{e878227b-d625-4ef2-ac49-a9dc05c5321a-35_90_72_2631_1873}