Differentiate rational functions

Find derivatives of quotients and fractions, often requiring simplification or algebraic manipulation.

5 questions

Edexcel C12 2014 January Q13
13. The curve \(C\) has equation $$y = \frac { ( x - 3 ) ( 3 x - 25 ) } { x } , \quad x > 0$$
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in a fully simplified form.
  2. Hence find the coordinates of the turning point on the curve \(C\).
  3. Determine whether this turning point is a minimum or maximum, justifying your answer. The point \(P\), with \(x\) coordinate \(2 \frac { 1 } { 2 }\), lies on the curve \(C\).
  4. Find the equation of the normal at \(P\), in the form \(a x + b y + c = 0\), where \(a\), b and \(c\) are integers.
    \includegraphics[max width=\textwidth, alt={}, center]{e878227b-d625-4ef2-ac49-a9dc05c5321a-35_90_72_2631_1873}
Edexcel C1 2010 January Q6
6. The curve \(C\) has equation $$y = \frac { ( x + 3 ) ( x - 8 ) } { x } , \quad x > 0$$
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in its simplest form.
  2. Find an equation of the tangent to \(C\) at the point where \(x = 2\)
OCR C1 2011 January Q6
6 Given that \(y = \frac { 5 } { x ^ { 2 } } - \frac { 1 } { 4 x } + x\), find
  1. \(\frac { \mathrm { d } y } { \mathrm {~d} x }\),
  2. \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
AQA C2 2010 January Q5
5 A curve has equation \(y = \frac { 1 } { x ^ { 3 } } + 48 x\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
  2. Hence find the equation of each of the two tangents to the curve that are parallel to the \(x\)-axis.
  3. Find an equation of the normal to the curve at the point \(( 1,49 )\).
AQA C2 2014 June Q4
5 marks
4 A curve has equation \(y = \frac { 1 } { x ^ { 2 } } + 4 x\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
  2. The point \(P ( - 1 , - 3 )\) lies on the curve. Find an equation of the normal to the curve at the point \(P\).
  3. Find an equation of the tangent to the curve that is parallel to the line \(y = - 12 x\).
    [0pt] [5 marks]