3
\includegraphics[max width=\textwidth, alt={}, center]{fa2213b3-480c-44cb-8ba0-ebd2b94d3d90-04_851_805_251_616}
The diagram shows the curve with equation \(\mathrm { y } = \mathrm { x } ^ { 3 }\) for \(0 \leqslant x \leqslant 1\), together with a set of \(n\) rectangles of width \(\frac { 1 } { n }\).
- By considering the sum of the areas of these rectangles, show that \(\int _ { 0 } ^ { 1 } x ^ { 3 } d x < U _ { n }\), where
$$\mathrm { U } _ { \mathrm { n } } = \left( \frac { \mathrm { n } + 1 } { 2 \mathrm { n } } \right) ^ { 2 }$$
- Use a similar method to find, in terms of \(n\), a lower bound \(L _ { n }\) for \(\int _ { 0 } ^ { 1 } x ^ { 3 } d x\).
- Find the least value of \(n\) such that \(\mathrm { U } _ { \mathrm { n } } - \mathrm { L } _ { \mathrm { n } } < 10 ^ { - 3 }\).