| Exam Board | Edexcel |
|---|---|
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2023 |
| Session | June |
| Paper | Download PDF ↗ |
| Topic | Integration by Substitution |
\begin{enumerate}
\setcounter{enumi}{4}
\item (a) Show that the substitution $t = \tan \left( \frac { x } { 2 } \right)$ transforms the integral
\end{enumerate}
$$\int \frac { 1 } { 2 \sin x - \cos x + 5 } d x$$
into the integral
$$\int \frac { 1 } { 3 t ^ { 2 } + 2 t + 2 } \mathrm {~d} t$$
(b) Hence determine
$$\int \frac { 1 } { 2 \sin x - \cos x + 5 } d x$$
\hfill \mbox{\textit{Edexcel FP1 2023 Q5}}