Edexcel FP1 2023 June — Question 6

Exam BoardEdexcel
ModuleFP1 (Further Pure Mathematics 1)
Year2023
SessionJune
PaperDownload PDF ↗
TopicTaylor series

6. $$y = \ln \left( \mathrm { e } ^ { 2 x } \cos 3 x \right) \quad - \frac { 1 } { 2 } < x < \frac { 1 } { 2 }$$
  1. Show that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = 2 - 3 \tan 3 x$$
  2. Determine \(\frac { \mathrm { d } ^ { 4 } y } { \mathrm {~d} x ^ { 4 } }\)
  3. Hence determine the first 3 non-zero terms in ascending powers of \(x\) of the Maclaurin series expansion of \(\ln \left( \mathrm { e } ^ { 2 x } \cos 3 x \right)\), giving each coefficient in simplest form.
  4. Use the Maclaurin series expansion for \(\ln ( 1 + x )\) to write down the first 4 non-zero terms in ascending powers of \(x\) of the Maclaurin series expansion of \(\ln ( 1 + k x )\), where \(k\) is a constant.
  5. Hence determine the value of \(k\) for which $$\lim _ { x \rightarrow 0 } \left( \frac { 1 } { x ^ { 2 } } \ln \frac { \mathrm { e } ^ { 2 x } \cos 3 x } { 1 + k x } \right)$$ exists.

6.

$$y = \ln \left( \mathrm { e } ^ { 2 x } \cos 3 x \right) \quad - \frac { 1 } { 2 } < x < \frac { 1 } { 2 }$$

(a) Show that

$$\frac { \mathrm { d } y } { \mathrm {~d} x } = 2 - 3 \tan 3 x$$

(b) Determine $\frac { \mathrm { d } ^ { 4 } y } { \mathrm {~d} x ^ { 4 } }$\\
(c) Hence determine the first 3 non-zero terms in ascending powers of $x$ of the Maclaurin series expansion of $\ln \left( \mathrm { e } ^ { 2 x } \cos 3 x \right)$, giving each coefficient in simplest form.\\
(d) Use the Maclaurin series expansion for $\ln ( 1 + x )$ to write down the first 4 non-zero terms in ascending powers of $x$ of the Maclaurin series expansion of $\ln ( 1 + k x )$, where $k$ is a constant.\\
(e) Hence determine the value of $k$ for which

$$\lim _ { x \rightarrow 0 } \left( \frac { 1 } { x ^ { 2 } } \ln \frac { \mathrm { e } ^ { 2 x } \cos 3 x } { 1 + k x } \right)$$

exists.

\hfill \mbox{\textit{Edexcel FP1 2023 Q6}}