6.
$$y = \ln \left( \mathrm { e } ^ { 2 x } \cos 3 x \right) \quad - \frac { 1 } { 2 } < x < \frac { 1 } { 2 }$$
- Show that
$$\frac { \mathrm { d } y } { \mathrm {~d} x } = 2 - 3 \tan 3 x$$
- Determine \(\frac { \mathrm { d } ^ { 4 } y } { \mathrm {~d} x ^ { 4 } }\)
- Hence determine the first 3 non-zero terms in ascending powers of \(x\) of the Maclaurin series expansion of \(\ln \left( \mathrm { e } ^ { 2 x } \cos 3 x \right)\), giving each coefficient in simplest form.
- Use the Maclaurin series expansion for \(\ln ( 1 + x )\) to write down the first 4 non-zero terms in ascending powers of \(x\) of the Maclaurin series expansion of \(\ln ( 1 + k x )\), where \(k\) is a constant.
- Hence determine the value of \(k\) for which
$$\lim _ { x \rightarrow 0 } \left( \frac { 1 } { x ^ { 2 } } \ln \frac { \mathrm { e } ^ { 2 x } \cos 3 x } { 1 + k x } \right)$$
exists.