CAIE FP1 2019 November — Question 8

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2019
SessionNovember
PaperDownload PDF ↗
Mark schemeDownload PDF ↗
TopicInvariant lines and eigenvalues and vectors

8 The matrix \(\mathbf { M }\) is defined by $$\mathbf { M } = \left( \begin{array} { c c c } 2 & m & 1 \\ 0 & m & 7 \\ 0 & 0 & 1 \end{array} \right) ,$$ where \(m \neq 0,1,2\).
  1. Find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { M } = \mathbf { P D P } ^ { - 1 }\).
  2. Find \(\mathbf { M } ^ { 7 } \mathbf { P }\).

8 The matrix $\mathbf { M }$ is defined by

$$\mathbf { M } = \left( \begin{array} { c c c } 
2 & m & 1 \\
0 & m & 7 \\
0 & 0 & 1
\end{array} \right) ,$$

where $m \neq 0,1,2$.\\
(i) Find a matrix $\mathbf { P }$ and a diagonal matrix $\mathbf { D }$ such that $\mathbf { M } = \mathbf { P D P } ^ { - 1 }$.\\

(ii) Find $\mathbf { M } ^ { 7 } \mathbf { P }$.\\

\hfill \mbox{\textit{CAIE FP1 2019 Q8}}