| Exam Board | CAIE |
|---|---|
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2019 |
| Session | November |
| Paper | Download PDF ↗ |
| Mark scheme | Download PDF ↗ |
| Topic | Complex numbers 2 |
9 (i) Use de Moivre's theorem to show that
$$\sec 6 \theta = \frac { \sec ^ { 6 } \theta } { 32 - 48 \sec ^ { 2 } \theta + 18 \sec ^ { 4 } \theta - \sec ^ { 6 } \theta }$$
(ii) Hence obtain the roots of the equation
$$3 x ^ { 6 } - 36 x ^ { 4 } + 96 x ^ { 2 } - 64 = 0$$
in the form sec $q \pi$, where $q$ is rational.\\
\hfill \mbox{\textit{CAIE FP1 2019 Q9}}