CAIE FP1 2016 November — Question 3

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2016
SessionNovember
PaperDownload PDF ↗
Mark schemeDownload PDF ↗
TopicInvariant lines and eigenvalues and vectors

3 Find a matrix \(\mathbf { A }\) whose eigenvalues are \(- 1,1,2\) and for which corresponding eigenvectors are $$\left( \begin{array} { l } 1 \\ 0 \\ 0 \end{array} \right) , \quad \left( \begin{array} { l } 1 \\ 1 \\ 0 \end{array} \right) , \quad \left( \begin{array} { l } 0 \\ 1 \\ 1 \end{array} \right) ,$$ respectively.

3 Find a matrix $\mathbf { A }$ whose eigenvalues are $- 1,1,2$ and for which corresponding eigenvectors are

$$\left( \begin{array} { l } 
1 \\
0 \\
0
\end{array} \right) , \quad \left( \begin{array} { l } 
1 \\
1 \\
0
\end{array} \right) , \quad \left( \begin{array} { l } 
0 \\
1 \\
1
\end{array} \right) ,$$

respectively.

\hfill \mbox{\textit{CAIE FP1 2016 Q3}}