CAIE FP1 2016 November — Question 2

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2016
SessionNovember
PaperDownload PDF ↗
Mark schemeDownload PDF ↗
TopicRoots of polynomials

2 Find the cubic equation with roots \(\alpha , \beta\) and \(\gamma\) such that $$\begin{aligned} \alpha + \beta + \gamma & = 3 \\ \alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } & = 1 \\ \alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 } & = - 30 \end{aligned}$$ giving your answer in the form \(x ^ { 3 } + p x ^ { 2 } + q x + r = 0\), where \(p , q\) and \(r\) are integers to be found.

2 Find the cubic equation with roots $\alpha , \beta$ and $\gamma$ such that

$$\begin{aligned}
\alpha + \beta + \gamma & = 3 \\
\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } & = 1 \\
\alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 } & = - 30
\end{aligned}$$

giving your answer in the form $x ^ { 3 } + p x ^ { 2 } + q x + r = 0$, where $p , q$ and $r$ are integers to be found.

\hfill \mbox{\textit{CAIE FP1 2016 Q2}}