The lines \(l _ { 1 }\) and \(l _ { 2 }\) have equations
$$\mathbf { r } = 6 \mathbf { i } - 3 \mathbf { j } + s ( 3 \mathbf { i } - 4 \mathbf { j } - 2 \mathbf { k } ) \quad \text { and } \quad \mathbf { r } = 2 \mathbf { i } - \mathbf { j } - 4 \mathbf { k } + t ( \mathbf { i } - 3 \mathbf { j } - \mathbf { k } )$$
respectively. The point \(P\) on \(l _ { 1 }\) and the point \(Q\) on \(l _ { 2 }\) are such that \(P Q\) is perpendicular to both \(l _ { 1 }\) and \(l _ { 2 }\). Show that the position vector of \(P\) is \(3 \mathbf { i } + \mathbf { j } + 2 \mathbf { k }\) and find the position vector of \(Q\).
Find, in the form \(\mathbf { r } = \mathbf { a } + \lambda \mathbf { b } + \mu \mathbf { c }\), an equation of the plane \(\Pi\) which passes through \(P\) and is perpendicular to \(l _ { 1 }\).
The plane \(\Pi\) meets the plane \(\mathbf { r } = p \mathbf { i } + q \mathbf { j }\) in the line \(l _ { 3 }\). Find a vector equation of \(l _ { 3 }\).
The lines $l _ { 1 }$ and $l _ { 2 }$ have equations
$$\mathbf { r } = 6 \mathbf { i } - 3 \mathbf { j } + s ( 3 \mathbf { i } - 4 \mathbf { j } - 2 \mathbf { k } ) \quad \text { and } \quad \mathbf { r } = 2 \mathbf { i } - \mathbf { j } - 4 \mathbf { k } + t ( \mathbf { i } - 3 \mathbf { j } - \mathbf { k } )$$
respectively. The point $P$ on $l _ { 1 }$ and the point $Q$ on $l _ { 2 }$ are such that $P Q$ is perpendicular to both $l _ { 1 }$ and $l _ { 2 }$. Show that the position vector of $P$ is $3 \mathbf { i } + \mathbf { j } + 2 \mathbf { k }$ and find the position vector of $Q$.
Find, in the form $\mathbf { r } = \mathbf { a } + \lambda \mathbf { b } + \mu \mathbf { c }$, an equation of the plane $\Pi$ which passes through $P$ and is perpendicular to $l _ { 1 }$.
The plane $\Pi$ meets the plane $\mathbf { r } = p \mathbf { i } + q \mathbf { j }$ in the line $l _ { 3 }$. Find a vector equation of $l _ { 3 }$.
\hfill \mbox{\textit{CAIE FP1 2016 Q11 EITHER}}