A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Sequences and series, recurrence and convergence
Q13
AQA Further Paper 2 2024 June — Question 13
5 marks
Exam Board
AQA
Module
Further Paper 2 (Further Paper 2)
Year
2024
Session
June
Marks
5
Topic
Sequences and series, recurrence and convergence
13
Use the method of differences to show that $$\sum _ { r = 2 } ^ { n } \frac { 1 } { ( r - 1 ) r ( r + 1 ) } = \frac { 1 } { 4 } - \frac { 1 } { 2 n } + \frac { 1 } { 2 ( n + 1 ) }$$ [5 marks]
13
Find the smallest integer \(n\) such that $$\sum _ { r = 2 } ^ { n } \frac { 1 } { ( r - 1 ) r ( r + 1 ) } > 0.24999$$
This paper
(17 questions)
View full paper
Q1
Q2
1
Q3
Q4
Q5
Q6
Q8
4
Q9
4
Q10
Q12
Q13
5
Q14
Q15
4
Q16
4
Q17
Q19
10
Q20