AQA Further Paper 2 2024 June — Question 13 5 marks

Exam BoardAQA
ModuleFurther Paper 2 (Further Paper 2)
Year2024
SessionJune
Marks5
TopicSequences and series, recurrence and convergence

13
  1. Use the method of differences to show that $$\sum _ { r = 2 } ^ { n } \frac { 1 } { ( r - 1 ) r ( r + 1 ) } = \frac { 1 } { 4 } - \frac { 1 } { 2 n } + \frac { 1 } { 2 ( n + 1 ) }$$ [5 marks]
    13
  2. Find the smallest integer \(n\) such that $$\sum _ { r = 2 } ^ { n } \frac { 1 } { ( r - 1 ) r ( r + 1 ) } > 0.24999$$