AQA Further Paper 2 (Further Paper 2) 2024 June

Question 1
View details
1 It is given that $$\left[ \begin{array} { l } 2
1
3 \end{array} \right] \cdot \left[ \begin{array} { c } 5
\lambda
- 6 \end{array} \right] = 0$$ where \(\lambda\) is a constant. Find the value of \(\lambda\) Circle your answer. -28-8 828
Question 2 1 marks
View details
2 The movement of a particle is described by the simple harmonic equation $$\ddot { x } = - 25 x$$ where \(x\) metres is the displacement of the particle at time \(t\) seconds, and \(\ddot { x } \mathrm {~m} \mathrm {~s} ^ { - 2 }\) is the acceleration of the particle. The maximum displacement of the particle is 9 metres. Find the maximum speed of the particle.
Circle your answer.
[0pt] [1 mark]
\(15 \mathrm {~m} \mathrm {~s} ^ { - 1 }\)
\(45 \mathrm {~m} \mathrm {~s} ^ { - 1 }\)
\(75 \mathrm {~m} \mathrm {~s} ^ { - 1 }\)
\(135 \mathrm {~m} \mathrm {~s} ^ { - 1 }\)
Question 3
View details
3 The function \(g\) is defined by $$g ( x ) = \operatorname { sech } x \quad ( x \in \mathbb { R } )$$ Which one of the following is the range of \(g\) ?
Tick \(( \checkmark )\) one box.
\(- \infty < \mathrm { g } ( x ) \leq - 1\)
\includegraphics[max width=\textwidth, alt={}, center]{99b03f18-6dd6-437d-8b01-009ca7ab49ea-03_117_117_635_854}
\(- 1 \leq \mathrm { g } ( x ) < 0\)
\includegraphics[max width=\textwidth, alt={}, center]{99b03f18-6dd6-437d-8b01-009ca7ab49ea-03_113_113_785_854}
\(0 < \mathrm { g } ( x ) \leq 1\)
\includegraphics[max width=\textwidth, alt={}, center]{99b03f18-6dd6-437d-8b01-009ca7ab49ea-03_117_117_927_854}
\(1 \leq g ( x ) \leq \infty\) □
Question 4
View details
4 The function f is a quartic function with real coefficients.
The complex number 5i is a root of the equation \(\mathrm { f } ( x ) = 0\)
Which one of the following must be a factor of \(\mathrm { f } ( x )\) ?
Circle your answer.
( \(x ^ { 2 } - 25\) )
\(\left( x ^ { 2 } - 5 \right)\)
\(\left( x ^ { 2 } + 5 \right)\)
\(\left( x ^ { 2 } + 25 \right)\)
Question 5
View details
5 The first four terms of the series \(S\) can be written as $$S = ( 1 \times 2 ) + ( 2 \times 3 ) + ( 3 \times 4 ) + ( 4 \times 5 ) + \ldots$$ 5
  1. Write an expression, using \(\sum\) notation, for the sum of the first \(n\) terms of \(S\) 5
  2. Show that the sum of the first \(n\) terms of \(S\) is equal to $$\frac { 1 } { 3 } n ( n + 1 ) ( n + 2 )$$
Question 6
View details
6 The cubic equation $$x ^ { 3 } + 5 x ^ { 2 } - 4 x + 2 = 0$$ has roots \(\alpha , \beta\) and \(\gamma\)
Find a cubic equation, with integer coefficients, whose roots are \(3 \alpha , 3 \beta\) and \(3 \gamma\)
Question 8 4 marks
View details
8 The vectors \(\mathbf { a } , \mathbf { b }\), and \(\mathbf { c }\) are such that \(\mathbf { a } \times \mathbf { b } = \left[ \begin{array} { l } 2
1
0 \end{array} \right]\) and \(\mathbf { a } \times \mathbf { c } = \left[ \begin{array} { l } 0
0
3 \end{array} \right]\)
Work out \(( \mathbf { a } - \mathbf { 4 } \mathbf { b } + \mathbf { 3 c } ) \times ( \mathbf { 2 a } )\)
[0pt] [4 marks]
Question 9 4 marks
View details
9 A curve passes through the point (-2, 4.73) and satisfies the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { y ^ { 2 } - x ^ { 2 } } { 2 x + 3 y }$$ Use Euler's step by step method once, and then the midpoint formula $$y _ { r + 1 } = y _ { r - 1 } + 2 h \mathrm { f } \left( x _ { r } , y _ { r } \right) , \quad x _ { r + 1 } = x _ { r } + h$$ once, each with a step length of 0.02 , to estimate the value of \(y\) when \(x = - 1.96\)
Give your answer to five significant figures.
[0pt] [4 marks]
Question 10
View details
10 The matrix \(\mathbf { C }\) is defined by $$\mathbf { C } = \left[ \begin{array} { c c } 3 & 2
- 4 & 5 \end{array} \right]$$ Prove that the transformation represented by \(\mathbf { C }\) has no invariant lines of the form \(y = k x\)
Latifa and Sam are studying polynomial equations of degree greater than 2 , with real coefficients and no repeated roots. Latifa says that if such an equation has exactly one real root, it must be of degree 3 Sam says that this is not correct. State, giving reasons, whether Latifa or Sam is right.
Question 12
View details
12
The transformation S is represented by the matrix \(\mathbf { M } = \left[ \begin{array} { c c } 1 & - 6
2 & 7 \end{array} \right]\)
The transformation T is a reflection in the line \(y = x \sqrt { 3 }\) and is represented by the matrix \(\mathbf { N }\) The point \(P ( x , y )\) is transformed first by S , then by T
The result of these transformations is the point \(Q ( 3,8 )\)
Find the coordinates of \(P\)
Give your answers to three decimal places.
Question 13 5 marks
View details
13
  1. Use the method of differences to show that $$\sum _ { r = 2 } ^ { n } \frac { 1 } { ( r - 1 ) r ( r + 1 ) } = \frac { 1 } { 4 } - \frac { 1 } { 2 n } + \frac { 1 } { 2 ( n + 1 ) }$$ [5 marks]
    13
  2. Find the smallest integer \(n\) such that $$\sum _ { r = 2 } ^ { n } \frac { 1 } { ( r - 1 ) r ( r + 1 ) } > 0.24999$$
Question 14
View details
14 The matrix \(\mathbf { M }\) is defined as $$\mathbf { M } = \left[ \begin{array} { c c c } 5 & 2 & 1
6 & 3 & 2 k + 3
2 & 1 & 5 \end{array} \right]$$ where \(k\) is a constant. 14
  1. Given that \(\mathbf { M }\) is a non-singular matrix, find \(\mathbf { M } ^ { - 1 }\) in terms of \(k\)
    14
  2. State any restrictions on the value of \(k\) 14
  3. Using your answer to part (a), show that the solution to the set of simultaneous equations below is independent of the value of \(k\) $$\begin{array} { r l c c } 5 x + 2 y + c & = & 1
    6 x + 3 y + ( 2 k + 3 ) z & = & 4 k + 3
    2 x + y + 5 z & = & 9 \end{array}$$
Question 15 4 marks
View details
15 The diagram shows the line \(y = 5 - x\)
\includegraphics[max width=\textwidth, alt={}, center]{99b03f18-6dd6-437d-8b01-009ca7ab49ea-18_1255_1125_349_440} 15
  1. On the diagram above, sketch the graph of \(y = \left| x ^ { 2 } - 4 x \right|\), including all parts of the graph where it intersects the line \(y = 5 - x\)
    (You do not need to show the coordinates of the points of intersection.) 15
  2. Find the solution of the inequality $$\left| x ^ { 2 } - 4 x \right| > 5 - x$$ Give your answer in an exact form.
    [0pt] [4 marks]
Question 16 4 marks
View details
16 The function f is defined by $$f ( x ) = \frac { a x + 5 } { x + b }$$ where \(a\) and \(b\) are constants. The graph of \(y = \mathrm { f } ( x )\) has asymptotes \(x = - 2\) and \(y = 3\) 16
  1. Write down the value of \(a\) and the value of \(b\) 16
  2. The diagram shows the graph of \(y = \mathrm { f } ( x )\) and its asymptotes.
    The shaded region \(R\) is enclosed by the graph of \(y = \mathrm { f } ( x )\), the \(x\)-axis and the \(y\)-axis.
    \includegraphics[max width=\textwidth, alt={}, center]{99b03f18-6dd6-437d-8b01-009ca7ab49ea-20_858_1002_1267_504} 16
    1. The shaded region \(R\) is rotated through \(360 ^ { \circ }\) about the \(x\)-axis to form a solid. Find the volume of this solid. Give your answer to three significant figures. 16
  3. (ii) The shaded region \(R\) is rotated through \(360 ^ { \circ }\) about the \(\boldsymbol { y }\)-axis to form a solid.
    Find the volume of this solid.
    Give your answer to three significant figures.
    [0pt] [4 marks]
Question 17
View details
17 The Argand diagram below shows a circle \(C\)
\includegraphics[max width=\textwidth, alt={}, center]{99b03f18-6dd6-437d-8b01-009ca7ab49ea-22_1063_926_317_541} 17
  1. Write down the equation of the locus of \(C\) in the form $$| z - w | = a$$ where \(w\) is a complex number whose real and imaginary parts are integers, and \(a\) is an integer.
    17
  2. It is given that \(z _ { 1 }\) is a complex number representing a point on \(C\). Of all the complex numbers which represent points on \(C , z _ { 1 }\) has the least argument. 17
    1. Find \(\left| z _ { 1 } \right|\)
      Give your answer in an exact form.
      17
  3. (ii) Show that \(\arg z _ { 1 } = \arcsin \left( \frac { 6 \sqrt { 3 } - 2 } { 13 } \right)\)
    \includegraphics[max width=\textwidth, alt={}]{99b03f18-6dd6-437d-8b01-009ca7ab49ea-25_2486_1744_178_132}
Question 19 10 marks
View details
19 Solve the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 4 \frac { \mathrm {~d} y } { \mathrm {~d} x } - 45 y = 21 \mathrm { e } ^ { 5 x } - 0.3 x + 27 x ^ { 2 }$$ given that \(y = \frac { 37 } { 225 }\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\) when \(x = 0\)
[0pt] [10 marks]
  • \(\begin{gathered} \text { - }
    \text { - }
    \text { - }
    \text { - }
    \text { - }
    \text { - }
    \text { - } \end{gathered}\)
Question 20
View details
20 The integral \(I _ { n }\) is defined by $$I _ { n } = \int _ { 0 } ^ { \frac { \pi } { 4 } } \cos ^ { n } x \mathrm {~d} x \quad ( n \geq 0 )$$ 20
  1. Show that $$I _ { n } = \left( \frac { n - 1 } { n } \right) I _ { n - 2 } + \frac { 1 } { n \left( 2 ^ { \frac { n } { 2 } } \right) } \quad ( n \geq 2 )$$ 20
  2. Use the result from part (a) to show that $$\int _ { 0 } ^ { \frac { \pi } { 4 } } \cos ^ { 6 } x d x = \frac { a \pi + b } { 192 }$$ where \(a\) and \(b\) are integers to be found.
    \includegraphics[max width=\textwidth, alt={}]{99b03f18-6dd6-437d-8b01-009ca7ab49ea-31_2491_1755_173_123} number \section*{Additional page, if required.
    Additional page, if required. Write the question numbers in the left-hand margin.} Additional page, if required. number Additional page, if required.
    Write the question numbers in the left-hand margin. number \section*{Additional page, if required.
    Additional page, if required. Write the question numbers in the left-hand margin.} number\section*{Additional page, if required.
    Additional page, if required. Write the question numbers in the left-hand margin.}
    \includegraphics[max width=\textwidth, alt={}]{99b03f18-6dd6-437d-8b01-009ca7ab49ea-36_2487_1748_175_130}