19 Solve the differential equation
$$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 4 \frac { \mathrm {~d} y } { \mathrm {~d} x } - 45 y = 21 \mathrm { e } ^ { 5 x } - 0.3 x + 27 x ^ { 2 }$$
given that \(y = \frac { 37 } { 225 }\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\) when \(x = 0\)
[0pt]
[10 marks]
- \(\begin{gathered} \text { - }
\text { - }
\text { - }
\text { - }
\text { - }
\text { - }
\text { - } \end{gathered}\)