AQA Further Paper 1 2020 June — Question 11 5 marks

Exam BoardAQA
ModuleFurther Paper 1 (Further Paper 1)
Year2020
SessionJune
Marks5
TopicVectors: Cross Product & Distances

11 The lines \(l _ { 1 } , l _ { 2 }\) and \(l _ { 3 }\) are defined as follows. $$\begin{aligned} & l _ { 1 } : \left( \mathbf { r } - \left[ \begin{array} { c } 1
5
- 1 \end{array} \right] \right) \times \left[ \begin{array} { c } - 2
1
- 3 \end{array} \right] = \mathbf { 0 }
& l _ { 2 } : \left( \mathbf { r } - \left[ \begin{array} { c } - 3
2
7 \end{array} \right] \right) \times \left[ \begin{array} { c } 2
- 1
3 \end{array} \right] = \mathbf { 0 }
& l _ { 3 } : \left( \mathbf { r } - \left[ \begin{array} { c } - 5
12
- 4 \end{array} \right] \right) \times \left[ \begin{array} { l } 4
0
9 \end{array} \right] = \mathbf { 0 } \end{aligned}$$ 11
    1. Explain how you know that two of the lines are parallel.
      11
    2. (ii)
    3. Show that the perpendicular distance between these two parallel lines is 7.95 units, correct to three significant figures.
      [5 marks] \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\)
      11
    4. Show that the lines \(l _ { 1 }\) and \(l _ { 3 }\) meet, and find the coordinates of their point of intersection.
      \includegraphics[max width=\textwidth, alt={}, center]{44e22a98-6424-4fb1-8a37-c965773cb7b6-23_2488_1716_219_153}