AQA Further Paper 1 2020 June — Question 7 4 marks

Exam BoardAQA
ModuleFurther Paper 1 (Further Paper 1)
Year2020
SessionJune
Marks4
Topic3x3 Matrices

7 Three planes have equations $$\begin{aligned} ( 4 k + 1 ) x - 3 y + ( k - 5 ) z & = 3
( k - 1 ) x + ( 3 - k ) y + 2 z & = 1
7 x - 3 y + 4 z & = 2 \end{aligned}$$ 7
  1. The planes do not meet at a unique point.
    Show that \(k = 4.5\) is one possible value of \(k\), and find the other possible value of \(k\).
    7
  2. For each value of \(k\) found in part (a), identify the configuration of the given planes.
    In each case fully justify your answer, stating whether or not the equations of the planes form a consistent system.
    [4 marks] \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\) \(\_\_\_\_\)