8 Kai is proving that \(n ^ { 3 } - n\) is a multiple of 3 for all positive integer values of \(n\).
Kai begins a proof by exhaustion.
Step 1
$$n ^ { 3 } - n = n \left( n ^ { 2 } - 1 \right)$$
Step 2 When \(n = 3 m\), where \(m\) is a \(n ^ { 3 } - n = 3 m \left( 9 m ^ { 2 } - 1 \right)\) non-negative integer which is a multiple of 3
Step 3 When \(n = 3 m + 1\),
$$\begin{aligned}
& n ^ { 3 } - n = ( 3 m + 1 ) \left( ( 3 m + 1 ) ^ { 2 } - 1 \right)
& = ( 3 m + 1 ) \left( 9 m ^ { 2 } \right)
& = 3 ( 3 m + 1 ) \left( 3 m ^ { 2 } \right)
\end{aligned}$$
Step 5 Therefore \(n ^ { 3 } - n\) is a multiple of 3 for all positive integer values of \(n\)
8
- Explain the two mistakes that Kai has made after Step 3.
Step 4
\section*{which is a multiple of 3
which is a multiple of 3}
\includegraphics[max width=\textwidth, alt={}]{b7df05bf-f3fc-4705-a13c-6b562896fa9f-10_67_134_964_230}
别
all positive integer values of \(n\)
\section*{a}
\includegraphics[max width=\textwidth, alt={}]{b7df05bf-f3fc-4705-a13c-6b562896fa9f-10_58_49_1037_370} 墐 pount \(\_\_\_\_\)
\(\_\_\_\_\) " \(\_\_\_\_\)
8 - Correct Kai's argument from Step 4 onwards.