AQA D2 2007 June — Question 4

Exam BoardAQA
ModuleD2 (Decision Mathematics 2)
Year2007
SessionJune
TopicThe Simplex Algorithm

4 A linear programming problem involving variables \(x\) and \(y\) is to be solved. The objective function to be maximised is \(P = 3 x + 5 y\). The initial Simplex tableau is given below.
\(\boldsymbol { P }\)\(\boldsymbol { x }\)\(\boldsymbol { y }\)\(\boldsymbol { s }\)\(\boldsymbol { t }\)\(\boldsymbol { u }\)value
1- 3- 50000
01210036
01101020
04100139
  1. In addition to \(x \geqslant 0 , y \geqslant 0\), write down three inequalities involving \(x\) and \(y\) for this problem.
    1. By choosing the first pivot from the \(\boldsymbol { y }\)-column, perform one iteration of the Simplex method.
    2. Explain how you know that the optimal value has not been reached.
    1. Perform one further iteration.
    2. Interpret the final tableau and state the values of the slack variables.