AQA FP2 (Further Pure Mathematics 2) 2009 June

Question 1
View details
1 Given that \(z = 2 \mathrm { e } ^ { \frac { \pi \mathrm { i } } { 12 } }\) satisfies the equation $$z ^ { 4 } = a ( 1 + \sqrt { 3 } i )$$ where \(a\) is real:
  1. find the value of \(a\);
  2. find the other three roots of this equation, giving your answers in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(- \pi < \theta \leqslant \pi\).
Question 2
View details
2
  1. Given that $$\frac { 1 } { 4 r ^ { 2 } - 1 } = \frac { A } { 2 r - 1 } + \frac { B } { 2 r + 1 }$$ find the values of \(A\) and \(B\).
  2. Use the method of differences to show that $$\sum _ { r = 1 } ^ { n } \frac { 1 } { 4 r ^ { 2 } - 1 } = \frac { n } { 2 n + 1 }$$
  3. Find the least value of \(n\) for which \(\sum _ { r = 1 } ^ { n } \frac { 1 } { 4 r ^ { 2 } - 1 }\) differs from 0.5 by less than 0.001 .
Question 3
View details
3 The cubic equation $$z ^ { 3 } + p z ^ { 2 } + 25 z + q = 0$$ where \(p\) and \(q\) are real, has a root \(\alpha = 2 - 3 \mathrm { i }\).
  1. Write down another non-real root, \(\beta\), of this equation.
  2. Find:
    1. the value of \(\alpha \beta\);
    2. the third root, \(\gamma\), of the equation;
    3. the values of \(p\) and \(q\).
Question 4
View details
4
  1. Sketch the graph of \(y = \tanh x\).
  2. Given that \(u = \tanh x\), use the definitions of \(\sinh x\) and \(\cosh x\) in terms of \(\mathrm { e } ^ { x }\) and \(\mathrm { e } ^ { - x }\) to show that $$x = \frac { 1 } { 2 } \ln \left( \frac { 1 + u } { 1 - u } \right)$$
    1. Show that the equation $$3 \operatorname { sech } ^ { 2 } x + 7 \tanh x = 5$$ can be written as $$3 \tanh ^ { 2 } x - 7 \tanh x + 2 = 0$$
    2. Show that the equation $$3 \tanh ^ { 2 } x - 7 \tanh x + 2 = 0$$ has only one solution for \(x\).
      Find this solution in the form \(\frac { 1 } { 2 } \ln a\), where \(a\) is an integer.
Question 5
View details
5
  1. Prove by induction that, if \(n\) is a positive integer, $$( \cos \theta + \mathrm { i } \sin \theta ) ^ { n } = \cos n \theta + \mathrm { i } \sin n \theta$$
  2. Hence, given that $$z = \cos \theta + \mathrm { i } \sin \theta$$ show that $$z ^ { n } + \frac { 1 } { z ^ { n } } = 2 \cos n \theta$$
  3. Given further that \(z + \frac { 1 } { z } = \sqrt { 2 }\), find the value of $$z ^ { 10 } + \frac { 1 } { z ^ { 10 } }$$
Question 6
View details
6
  1. Two points, \(A\) and \(B\), on an Argand diagram are represented by the complex numbers \(2 + 3 \mathrm { i }\) and \(- 4 - 5 \mathrm { i }\) respectively. Given that the points \(A\) and \(B\) are at the ends of a diameter of a circle \(C _ { 1 }\), express the equation of \(C _ { 1 }\) in the form \(\left| z - z _ { 0 } \right| = k\).
  2. A second circle, \(C _ { 2 }\), is represented on the Argand diagram by the equation \(| z - 5 + 4 \mathrm { i } | = 4\). Sketch on one Argand diagram both \(C _ { 1 }\) and \(C _ { 2 }\).
  3. The points representing the complex numbers \(z _ { 1 }\) and \(z _ { 2 }\) lie on \(C _ { 1 }\) and \(C _ { 2 }\) respectively and are such that \(\left| z _ { 1 } - z _ { 2 } \right|\) has its maximum value. Find this maximum value, giving your answer in the form \(a + b \sqrt { 5 }\).
Question 7
View details
7 The diagram shows a curve which starts from the point \(A\) with coordinates ( 0,2 ). The curve is such that, at every point \(P\) on the curve, $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { 2 } s$$ where \(s\) is the length of the \(\operatorname { arc } A P\).
\includegraphics[max width=\textwidth, alt={}, center]{587aac5c-fbc2-41d2-b1b3-16f3f7851d9d-4_399_764_1324_605}
    1. Show that $$\frac { \mathrm { d } s } { \mathrm {~d} x } = \frac { 1 } { 2 } \sqrt { 4 + s ^ { 2 } }$$ (3 marks)
    2. Hence show that $$s = 2 \sinh \frac { x } { 2 }$$
    3. Hence find the cartesian equation of the curve.
  1. Show that $$y ^ { 2 } = 4 + s ^ { 2 }$$