OCR MEI C4 (Core Mathematics 4) 2006 June

Question 1
View details
1 Fig. 1 shows part of the graph of \(y = \sin x - \sqrt { 3 } \cos x\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c64062c4-4cbd-41b2-9b4d-60a43dceb700-2_467_629_468_717} \captionsetup{labelformat=empty} \caption{Fig. 1}
\end{figure} Express \(\sin x - \sqrt { 3 } \cos x\) in the form \(R \sin ( x - \alpha )\), where \(R > 0\) and \(0 \leqslant \alpha \leqslant \frac { 1 } { 2 } \pi\).
Hence write down the exact coordinates of the turning point P .
Question 2
View details
2
  1. Given that $$\frac { 3 + 2 x ^ { 2 } } { ( 1 + x ) ^ { 2 } ( 1 - 4 x ) } = \frac { A } { 1 + x } + \frac { B } { ( 1 + x ) ^ { 2 } } + \frac { C } { 1 - 4 x } ,$$ where \(A , B\) and \(C\) are constants, find \(B\) and \(C\), and show that \(A = 0\).
  2. Given that \(x\) is sufficiently small, find the first three terms of the binomial expansions of \(( 1 + x ) ^ { - 2 }\) and \(( 1 - 4 x ) ^ { - 1 }\). Hence find the first three terms of the expansion of \(\frac { 3 + 2 x ^ { 2 } } { ( 1 + x ) ^ { 2 } ( 1 - 4 x ) }\).
Question 3
View details
3 Given that \(\sin ( \theta + \alpha ) = 2 \sin \theta\), show that \(\tan \theta = \frac { \sin \alpha } { 2 - \cos \alpha }\). Hence solve the equation \(\sin \left( \theta + 40 ^ { \circ } \right) = 2 \sin \theta\), for \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).
Question 4
View details
4
  1. The number of bacteria in a colony is increasing at a rate that is proportional to the square root of the number of bacteria present. Form a differential equation relating \(x\), the number of bacteria, to the time \(t\).
  2. In another colony, the number of bacteria, \(y\), after time \(t\) minutes is modelled by the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} t } = \frac { 10000 } { \sqrt { y } } .$$ Find \(y\) in terms of \(t\), given that \(y = 900\) when \(t = 0\). Hence find the number of bacteria after 10 minutes.
Question 5
View details
5
  1. Show that \(\int x \mathrm { e } ^ { - 2 x } \mathrm {~d} x = - \frac { 1 } { 4 } \mathrm { e } ^ { - 2 x } ( 1 + 2 x ) + c\). A vase is made in the shape of the volume of revolution of the curve \(y = x ^ { 1 / 2 } \mathrm { e } ^ { - x }\) about the \(x\)-axis between \(x = 0\) and \(x = 2\) (see Fig. 5). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{c64062c4-4cbd-41b2-9b4d-60a43dceb700-3_716_741_1233_662} \captionsetup{labelformat=empty} \caption{Fig. 5}
    \end{figure}
  2. Show that this volume of revolution is \(\frac { 1 } { 4 } \pi \left( 1 - \frac { 5 } { \mathrm { e } ^ { 4 } } \right)\). Fig. 6 shows the arch ABCD of a bridge. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{c64062c4-4cbd-41b2-9b4d-60a43dceb700-4_378_1630_461_214} \captionsetup{labelformat=empty} \caption{Fig. 6}
    \end{figure} The section from B to C is part of the curve OBCE with parametric equations $$x = a ( \theta - \sin \theta ) , y = a ( 1 - \cos \theta ) \text { for } 0 \leqslant \theta \leqslant 2 \pi$$ where \(a\) is a constant.
  3. Find, in terms of \(a\),
    (A) the length of the straight line OE,
    (B) the maximum height of the arch.
  4. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(\theta\). The straight line sections AB and CD are inclined at \(30 ^ { \circ }\) to the horizontal, and are tangents to the curve at B and C respectively. BC is parallel to the \(x\)-axis. BF is parallel to the \(y\)-axis.
  5. Show that at the point B the parameter \(\theta\) satisfies the equation $$\sin \theta = \frac { 1 } { \sqrt { 3 } } ( 1 - \cos \theta )$$ Verify that \(\theta = \frac { 2 } { 3 } \pi\) is a solution of this equation.
    Hence show that \(\mathrm { BF } = \frac { 3 } { 2 } a\), and find OF in terms of \(a\), giving your answer exactly.
  6. Find BC and AF in terms of \(a\). Given that the straight line distance AD is 20 metres, calculate the value of \(a\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{c64062c4-4cbd-41b2-9b4d-60a43dceb700-5_748_1306_319_367} \captionsetup{labelformat=empty} \caption{Fig. 7}
    \end{figure} Fig. 7 illustrates a house. All units are in metres. The coordinates of A, B, C and E are as shown. BD is horizontal and parallel to AE .
  7. Find the length AE .
  8. Find a vector equation of the line BD . Given that the length of BD is 15 metres, find the coordinates of D.
  9. Verify that the equation of the plane ABC is $$- 3 x + 4 y + 5 z = 30$$ Write down a vector normal to this plane.
  10. Show that the vector \(\left( \begin{array} { l } 4
    3
    5 \end{array} \right)\) is normal to the plane ABDE . Hence find the equation of the plane ABDE .
  11. Find the angle between the planes ABC and ABDE . RECOGNISING ACHIEVEMENT \section*{OXFORD CAMBRIDGE AND RSA EXAMINATIONS} Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education \section*{MEI STRUCTURED MATHEMATICS} Applications of Advanced Mathematics (C4) \section*{Paper B: Comprehension} Monday 12 JUNE 2006 Afternoon Up to 1 hour Additional materials:
    Rough paper
    MEI Examination Formulae and Tables (MF2) TIME Up to 1 hour
    • Write your name, centre number and candidate number in the spaces at the top of this page.
    • Answer all the questions.
    • Write your answers in the spaces provided on the question paper.
    • You are permitted to use a graphical calculator in this paper.
    • The number of marks is given in brackets [ ] at the end of each question or part question.
    • The insert contains the text for use with the questions.
    • You may find it helpful to make notes and do some calculations as you read the passage.
    • You are not required to hand in these notes with your question paper.
    • You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
    • The total number of marks for this paper is 18.
    For Examiner's Use
    Qu.Mark
    1
    2
    3
    4
    5
    6
    Total
    1 The marathon is 26 miles and 385 yards long ( 1 mile is 1760 yards). There are now several men who can run 2 miles in 8 minutes. Imagine that an athlete maintains this average speed for a whole marathon. How long does the athlete take?
    2 According to the linear model, in which calendar year would the record for the men's mile first become negative?
    3 Explain the statement in line 93 "According to this model the 2-hour marathon will never be run."
    4 Explain how the equation in line 49, $$R = L + ( U - L ) \mathrm { e } ^ { - k t } ,$$ is consistent with Fig. 2
  12. initially,
  13. for large values of \(t\).
  14. \(\_\_\_\_\)
    5 A model for an athletics record has the form $$R = A - ( A - B ) \mathrm { e } ^ { - k t } \text { where } A > B > 0 \text { and } k > 0 .$$
  15. Sketch the graph of \(R\) against \(t\), showing \(A\) and \(B\) on your graph.
  16. Name one event for which this might be an appropriate model.

  17. \includegraphics[max width=\textwidth, alt={}, center]{c64062c4-4cbd-41b2-9b4d-60a43dceb700-9_803_808_721_575}
  18. \(\_\_\_\_\)
Question 6
View details
6 A number of cases of the general exponential model for the marathon are given in Table 6. One of these is $$R = 115 + ( 175 - 115 ) \mathrm { e } ^ { - 0.0467 t ^ { 0.797 } }$$
  1. What is the value of \(t\) for the year 2012?
  2. What record time does this model predict for the year 2012?
  3. \(\_\_\_\_\)
  4. \(\_\_\_\_\)