| Exam Board | SPS |
| Module | SPS FM Pure (SPS FM Pure) |
| Year | 2024 |
| Session | June |
| Topic | Linear transformations |
16.
$$\begin{gathered}
M _ { 1 } = \left( \begin{array} { c c }
2 k - 9 & 5 - k
- k & k - 2
\end{array} \right)
M _ { 2 } = \left( \begin{array} { c c }
5 & 1
2 k - 3 & k - 3
\end{array} \right)
k \in \mathbb { R }
\end{gathered}$$
Matrices \(M _ { 1 }\) and \(M _ { 2 }\) represent transformations \(T _ { 1 }\) and \(T _ { 2 }\) respectively.
\(\Delta\) is a triangle in the \(x y\)-plane with vertices at \(( 0,0 ) , ( 4,0 )\) and \(( 3,2 )\).
The image of \(\Delta\) under \(T _ { 1 }\) is \(\Delta _ { 1 }\) and the image of \(\Delta\) under \(T _ { 2 }\) is \(\Delta _ { 2 }\).
The area of \(\Delta _ { 2 }\) is greater than the area of \(\Delta _ { 1 }\).
Find the range of possible values of \(k\).
[0pt]
[BLANK PAGE]
[0pt]
[BLANK PAGE]
[0pt]
[BLANK PAGE]
[0pt]
[BLANK PAGE]
[0pt]
[BLANK PAGE]
[0pt]
[BLANK PAGE]