Relative to a fixed origin \(O\),
the point \(A\) has position vector \(\mathbf { i } + 7 \mathbf { j } - 2 \mathbf { k }\),
the point \(B\) has position vector \(4 \mathbf { i } + 3 \mathbf { j } + 3 \mathbf { k }\),
and the point \(C\) has position vector \(2 \mathbf { i } + 10 \mathbf { j } + 9 \mathbf { k }\).
Given that \(A B C D\) is a parallelogram,
find the position vector of point \(D\).
The vector \(\overrightarrow { A X }\) has the same direction as \(\overrightarrow { A B }\).
Given that \(| \overrightarrow { A X } | = 10 \sqrt { 2 }\),
find the position vector of \(X\). [0pt]
[BLANK PAGE]