| Exam Board | SPS |
| Module | SPS FM Pure (SPS FM Pure) |
| Year | 2024 |
| Session | June |
| Topic | Vectors 3D & Lines |
10.
$$\begin{aligned}
& \boldsymbol { v } _ { \mathbf { 1 } } = \left( \begin{array} { c }
\sqrt { 17 }
\cos 2 \theta
- 4
\end{array} \right)
& \boldsymbol { v } _ { \mathbf { 2 } } = \left( \begin{array} { c }
- \sin 2 \theta
2 \sqrt { 2 }
1
\end{array} \right)
\end{aligned}$$
Given that \(\boldsymbol { v } _ { \mathbf { 1 } }\) and \(\boldsymbol { v } _ { \mathbf { 2 } }\) are perpendicular and that \(0 \leq \theta \leq \pi\), find all possible values of \(\theta\). Give your answers to 3 significant figures.
[0pt]
[BLANK PAGE]