| Exam Board | SPS |
| Module | SPS FM Pure (SPS FM Pure) |
| Year | 2024 |
| Session | June |
| Topic | Implicit equations and differentiation |
12. A curve \(C\) is given by the equation
$$\sin x + \cos y = 0.5 \quad - \frac { \pi } { 2 } \leqslant x < \frac { 3 \pi } { 2 } , - \pi < y < \pi$$
A point \(P\) lies on \(C\).
The tangent to \(C\) at the point \(P\) is parallel to the \(x\)-axis.
Find the exact coordinates of all possible points \(P\), justifying your answer.
(Solutions based entirely on graphical or numerical methods are not acceptable.)
[0pt]
[BLANK PAGE]