| Exam Board | SPS |
| Module | SPS FM Statistics (SPS FM Statistics) |
| Year | 2020 |
| Session | October |
| Topic | Continuous Probability Distributions and Random Variables |
| Type | Composite/applied transformation |
6. The continuous random variable \(X\) has (cumulative) distribution function given by
$$F ( x ) = \left\{ \begin{array} { c c }
0 & x < 1
1 - \frac { 1 } { x ^ { 4 } } & x \geq 1
\end{array} \right.$$
a. Show that the probability density function of \(Y\), where \(Y = \frac { 1 } { X ^ { 2 } }\), is given by
$$g ( y ) = \left\{ \begin{array} { c c }
2 y & 0 < y \leq 1
0 & \text { otherwise }
\end{array} \right.$$
b. Find \(\mathrm { E } ( \sqrt [ 3 ] { Y } )\).