SPS SPS FM Statistics 2020 October — Question 1

Exam BoardSPS
ModuleSPS FM Statistics (SPS FM Statistics)
Year2020
SessionOctober
TopicLinear combinations of normal random variables
TypePure expectation and variance calculation

  1. \(\mathrm { E } ( a X + b Y + c ) = a \mathrm { E } ( X ) + b \mathrm { E } ( Y ) + c\),
  2. if \(X\) and \(Y\) are independent then \(\operatorname { Var } ( a X + b Y + c ) = a ^ { 2 } \operatorname { Var } ( X ) + b ^ { 2 } \operatorname { Var } ( Y )\).
\section*{Discrete distributions} \(X\) is a random variable taking values \(x _ { i }\) in a discrete distribution with \(\mathrm { P } \left( X = x _ { i } \right) = p _ { i }\)
Expectation: \(\mu = \mathrm { E } ( X ) = \sum x _ { i } p _ { i }\)
Variance: \(\sigma ^ { 2 } = \operatorname { Var } ( X ) = \sum \left( x _ { i } - \mu \right) ^ { 2 } p _ { i } = \sum x _ { i } ^ { 2 } p _ { i } - \mu ^ { 2 }\)
\(P ( X = x )\)E \(( X )\)\(\operatorname { Var } ( X )\)
Binomial \(\mathrm { B } ( n , p )\)\(\binom { n } { x } p ^ { x } ( 1 - p ) ^ { n - x }\)\(n p\)\(n p ( 1 - p )\)
Uniform distribution over \(1,2 , \ldots , n , \mathrm { U } ( n )\)\(\frac { 1 } { n }\)\(\frac { n + 1 } { 2 }\)\(\frac { 1 } { 12 } \left( n ^ { 2 } - 1 \right)\)
Geometric distribution Geo(p)\(( 1 - p ) ^ { x - 1 } p\)\(\frac { 1 } { p }\)\(\frac { 1 - p } { p ^ { 2 } }\)
Poisson \(\operatorname { Po } ( \lambda )\)\(e ^ { - \lambda } \frac { \lambda ^ { x } } { x ! }\)\(\lambda\)\(\lambda\)
\section*{Continuous distributions} \(X\) is a continuous random variable with probability density function (p.d.f.) \(\mathrm { f } ( x )\)
Expectation: \(\mu = \mathrm { E } ( X ) = \int x \mathrm { f } ( x ) \mathrm { d } x\)
Variance: \(\sigma ^ { 2 } = \operatorname { Var } ( X ) = \int ( x - \mu ) ^ { 2 } \mathrm { f } ( x ) \mathrm { d } x = \int x ^ { 2 } \mathrm { f } ( x ) \mathrm { d } x - \mu ^ { 2 }\)
Cumulative distribution function \(\mathrm { F } ( x ) = \mathrm { P } ( X \leq x ) = \int _ { - \infty } ^ { x } \mathrm { f } ( t ) \mathrm { d } t\)
p.d.f.E ( \(X\) )\(\operatorname { Var } ( X )\)
Continuous uniform distribution over [ \(a , b\) ]\(\frac { 1 } { b - a }\)\(\frac { 1 } { 2 } ( a + b )\)\(\frac { 1 } { 12 } ( b - a ) ^ { 2 }\)
Exponential\(\lambda \mathrm { e } ^ { - \lambda x }\)\(\frac { 1 } { \lambda }\)\(\frac { 1 } { \lambda ^ { 2 } }\)
Normal \(N \left( \mu , \sigma ^ { 2 } \right)\)\(\frac { 1 } { \sigma \sqrt { 2 \pi } } \mathrm { e } ^ { - \frac { 1 } { 2 } \left( \frac { x - \mu } { \sigma } \right) ^ { 2 } }\)\(\mu\)\(\sigma ^ { 2 }\)
\section*{Percentage points of the normal distribution} If \(Z\) has a normal distribution with mean 0 and variance 1 then, for each value of \(p\), the table gives the value of \(z\) such that \(P ( Z \leq z ) = p\).
\(p\)0.750.900.950.9750.990.9950.99750.9990.9995
\(z\)0.6741.2821.6451.9602.3262.5762.8073.0903.291
  1. The random variable \(X\) is uniformly distributed over the interval \([ - 1,5 ]\).
    a. Sketch the probability density function \(f ( x )\) of \(X\).
    b. State the value of \(\mathrm { P } ( X = 2 )\)
Find
c. \(\mathrm { E } ( X )\)
d. \(\operatorname { Var } ( X )\)