OCR MEI Paper 2 2020 November — Question 10

Exam BoardOCR MEI
ModulePaper 2 (Paper 2)
Year2020
SessionNovember
TopicSmall angle approximation

10 In this question you must show detailed reasoning. The equation of a curve is $$y = \frac { \sin 2 x - x } { x \sin x }$$
  1. Use the small angle approximation given in the list of formulae on pages 2-3 of this question paper to show that $$\int _ { 0.01 } ^ { 0.05 } \mathrm { ydx } \approx \ln 5$$
  2. Use the same small angle approximation to show that $$\frac { d y } { d x } \approx - 10000 \text { at the point where } x = 0.01 \text {. }$$ The equation \(y = 0\) has a root near \(x = 1\). Joan uses the Newton-Raphson method to find this root. The output from the spreadsheet she uses is shown in Fig. 10.1. \begin{table}[h]
    \(n\)01234567
    \(\mathrm { x } _ { \mathrm { n } }\)10.9585090.9500840.9482610.947860.9477720.9477530.947748
    \captionsetup{labelformat=empty} \caption{Fig. 10.1}
    \end{table} Joan carries out some analysis of this output. The results are shown in Fig. 10.2. \begin{table}[h]
    \(x\)\(y\)
    0.9477475\(- 7.79967 \mathrm { E } - 07\)
    0.9477485\(- 2.90821 \mathrm { E } - 06\)
    \(x\)\(y\)
    0.947745\(4.54066 \mathrm { E } - 06\)
    0.947755\(- 1.67417 \mathrm { E } - 05\)
    \captionsetup{labelformat=empty} \caption{Fig. 10.2}
    \end{table}
  3. Consider the information in Fig. 10.1 and Fig. 10.2.
    • Write 4.54066E-06 in standard mathematical notation.
    • State the value of the root as accurately as you can, justifying your answer.