A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Reciprocal Trig & Identities
Q8
CAIE P3 2021 November — Question 8
Exam Board
CAIE
Module
P3 (Pure Mathematics 3)
Year
2021
Session
November
Topic
Reciprocal Trig & Identities
8
By first expanding \(\left( \cos ^ { 2 } \theta + \sin ^ { 2 } \theta \right) ^ { 2 }\), show that $$\cos ^ { 4 } \theta + \sin ^ { 4 } \theta \equiv 1 - \frac { 1 } { 2 } \sin ^ { 2 } 2 \theta .$$
Hence solve the equation $$\cos ^ { 4 } \theta + \sin ^ { 4 } \theta = \frac { 5 } { 9 } ,$$ for \(0 ^ { \circ } < \theta < 180 ^ { \circ }\).
This paper
(11 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10
Q11