OCR MEI Further Numerical Methods 2020 November — Question 7

Exam BoardOCR MEI
ModuleFurther Numerical Methods (Further Numerical Methods)
Year2020
SessionNovember
TopicSign Change & Interval Methods
TypeNumerical Differentiation Estimates

7 Fig. 7.1 shows two values of \(x\) and the associated values of \(\mathrm { f } ( x )\). \begin{table}[h]
\(x\)33.5
\(\mathrm { f } ( x )\)6.0827634.596194
\captionsetup{labelformat=empty} \caption{Fig. 7.1}
\end{table}
  1. Use the forward difference method to calculate an estimate of the gradient of \(\mathrm { f } ( x )\) at \(x = 3\), giving your answer correct to 4 decimal places. Fig. 7.2 shows some spreadsheet output with additional values of \(x\) and the associated values of \(\mathrm { f } ( x )\). \begin{table}[h]
    \(x\)33.000013.00013.0013.013.1
    \(\mathrm { f } ( x )\)6.0827636.082746.0825416.080546.0604545.848846
    \captionsetup{labelformat=empty} \caption{Fig. 7.2}
    \end{table} These values have been used to produce a sequence of estimates of the gradient of \(\mathrm { f } ( x )\) at \(x = 3\), together with some further analysis. This is shown in the spreadsheet output in Fig. 7.3. \begin{table}[h]
    \(h\)0.10.010.0010.00010.00001
    estimate-2.339165-2.230883-2.220532-2.219501-2.219398
    difference0.10828150.0103520.00103070.000103
    ratio0.0956020.0995670.0999568
    \captionsetup{labelformat=empty} \caption{Fig. 7.3}
    \end{table} Tommy states that the differences between successive estimates is decreasing so rapidly that the order of convergence of this sequence of estimates is much faster than first order.
  2. Explain whether or not Tommy is correct.
  3. Use extrapolation to determine the value of the gradient of \(\mathrm { f } ( x )\) at \(x = 3\) as accurately as possible, justifying the precision quoted.
  4. Calculate an estimate of the absolute error when \(\mathrm { f } ( 3 )\) is used as an approximation to \(\mathrm { f } ( 3.02 )\).