OCR MEI Further Numerical Methods 2020 November — Question 5

Exam BoardOCR MEI
ModuleFurther Numerical Methods (Further Numerical Methods)
Year2020
SessionNovember
TopicSign Change & Interval Methods
TypeNumerical Differentiation Estimates

5 You are given that
\(g ( x ) = \frac { \sqrt [ 3 ] { x ^ { x } + 25 } } { 2 }\). Fig. 5.1 shows two values of \(x\) and the associated values of \(\mathrm { g } ( x )\). \begin{table}[h]
\(x\)1.451.55
\(g ( x )\)1.494681.49949
\captionsetup{labelformat=empty} \caption{Fig. 5.1}
\end{table}
  1. Use the central difference method to calculate an estimate of \(\mathrm { g } ^ { \prime } ( 1.5 )\), giving your answer correct to 3 decimal places. The equation \(x ^ { x } - 8 x ^ { 3 } + 25 = 0\) has two roots, \(\alpha\) and \(\beta\), such that \(\alpha \approx 1.5\) and \(\beta \approx 4.4\).
  2. Obtain the iterative formula \(x _ { n + 1 } = g \left( x _ { n } \right) = \frac { \sqrt [ 3 ] { x _ { n } ^ { X _ { n } } + 25 } } { 2 }\).
  3. Use your answer to part (a) to explain why it is possible that the iterative formula \(x _ { n + 1 } = g \left( x _ { n } \right) = \frac { \sqrt [ 3 ] { x _ { n } ^ { X _ { n } } + 25 } } { 2 }\) may be used to find \(\alpha\).
  4. Starting with \(x _ { 0 } = 1.5\), use the iterative formula to find \(x _ { 1 } , x _ { 2 } , x _ { 3 } , x _ { 4 } , x _ { 5 }\), and \(x _ { 6 }\).
  5. Use your answer to part (d) to state the value of \(\alpha\) correct to 8 decimal places. Starting with \(x _ { 0 } = 4.5\) the same iterative formula is used in an attempt to find \(\beta\). The results are shown in Fig. 5.2. \begin{table}[h]
    \(n\)\(x _ { n }\)
    04.5
    14.81826433
    26.27473453
    323.2937196
    4\(2.0654 \mathrm { E } + 10\)
    5\#NUM!
    \captionsetup{labelformat=empty} \caption{Fig. 5.2}
    \end{table}
  6. Explain why \#NUM! is displayed in the cell for \(x _ { 5 }\).
  7. On the diagram in the Printed Answer Booklet, starting with \(x _ { 0 } = 4.5\), illustrate how the iterative formula works to find \(x _ { 1 }\) and \(x _ { 2 }\).
  8. Determine what happens when the relaxed iteration \(x _ { n + 1 } = ( 1 - \lambda ) x _ { n } + \lambda g \left( x _ { n } \right)\) is used to try to find \(\beta\) with \(x _ { 0 } = 4.5\), in each of the following cases.
    • \(\lambda = 0.5\)
    • \(\lambda = - 0.4\)