OCR MEI Further Numerical Methods 2020 November — Question 6

Exam BoardOCR MEI
ModuleFurther Numerical Methods (Further Numerical Methods)
Year2020
SessionNovember
TopicSign Change & Interval Methods
TypeInterval Bisection from Spreadsheet

6 Fig. 6.1 shows the graph of \(y = \mathrm { e } ^ { 3 x } - 11 x - 0.5\) for \(- 0.5 \leqslant x \leqslant 1\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{87bb8eb7-b725-48b0-b32b-0bfce624cd91-08_576_881_315_333} \captionsetup{labelformat=empty} \caption{Fig. 6.1}
\end{figure} The equation \(\mathrm { e } ^ { 3 x } - 11 x - 0.5 = 0\) has two roots, \(\alpha\) and \(\beta\), such that \(\alpha < \beta\). Dennis is going to use the method of interval bisection with starting values denoted by \(a\) and \(b\).
  1. Explain why the method of interval bisection starting with \(a = 0\) and \(b = 1\) may not be used to find either \(\alpha\) or \(\beta\). Dennis uses the method of interval bisection starting with \(a = 0\) and \(b = 0.5\) to find \(\alpha\). Some spreadsheet output is shown in Fig. 6.2. \begin{table}[h]
    ABCDEF
    1af(a)bf(b)\(x _ { \text {new } }\)\(\mathrm { f } \left( x _ { \text {new } } \right)\)
    200.50.5-1.518310.25-1.133
    300.50.25-1.1330.125-0.42
    400.50.125-0.420010.06250.01873
    50.06250.018730.125-0.420010.09375-0.2065
    \captionsetup{labelformat=empty} \caption{Fig. 6.2}
    \end{table} Dennis states that the formula in cell B2 is $$= \operatorname { EXP } \left( 3 ^ { * } \mathrm {~A} 1 \right) - 11 \mathrm {~A} 2 - 0.5$$ Dennis has made two errors.
  2. Write a correct version of Dennis's formula for cell B2. The formula in cell A3, which is correct, is
    = IF(F2 > 0, E2, A2)
  3. Write a suitable formula for cell C3.
  4. Use the information in Fig. 6.2 to
    • find the value of \(\alpha\) as accurately as possible,
    • state the maximum possible error in this estimate.
    Liren uses a different method to find a sequence of estimates of the value of \(\beta\) using a spreadsheet. The output, together with some further analysis, is shown in Fig. 6.3. \begin{table}[h]
    ABCD
    1\(x\)f(x)differenceratio
    20.4-1.5799
    30.6-1.0504
    40.996718.4245
    50.64398-0.6809-0.35273
    60.67036-0.40260.026378-0.0748
    70.708520.083860.0381641.44682
    80.70194-0.0075-0.00658-0.1724
    90.70248-0.00010.00054-0.082
    100.70249\(1.8 \mathrm { E } - 07\)\(8.88 \mathrm { E } - 06\)0.01646
    \captionsetup{labelformat=empty} \caption{Fig. 6.3}
    \end{table} The formula in cell A4 is $$= ( \mathrm { A } 2 * \mathrm {~B} 3 - \mathrm { A } 3 * \mathrm {~B} 2 ) / ( \mathrm { B } 3 - \mathrm { B } 2 )$$
  5. State the method being used.
  6. Explain what the values in column D tell you about the order of convergence of this sequence of estimates. Liren states that \(\beta = 0.70249\) correct to 5 decimal places.
  7. Determine whether Liren is correct.