OCR MEI Further Numerical Methods 2022 June — Question 7

Exam BoardOCR MEI
ModuleFurther Numerical Methods (Further Numerical Methods)
Year2022
SessionJune
TopicSign Change & Interval Methods
TypePolynomial Interpolation from Data

7 Sam decided to go on a high-protein diet. Sam's mass in \(\mathrm { kg } , M\), after \(t\) days of following the diet is recorded in Fig. 7.1. \begin{table}[h]
\(t\)0102030
\(M\)88.380.0578.778.85
\captionsetup{labelformat=empty} \caption{Fig. 7.1}
\end{table} A difference table for the data is shown in Fig. 7.2. \begin{table}[h]
\(t\)\(M\)\(\Delta M\)\(\Delta ^ { 2 } M\)\(\Delta ^ { 3 } M\)
088.3
1080.05
2078.7
3078.85
\captionsetup{labelformat=empty} \caption{Fig. 7.2}
\end{table}
  1. Complete the copy of the difference table in the Printed Answer Booklet. Sam's doctor uses these data to construct a cubic interpolating polynomial to model Sam's mass at time \(t\) days after starting the diet.
  2. Find the model in the form \(\mathrm { M } = \mathrm { at } ^ { 3 } + \mathrm { bt } ^ { 2 } + \mathrm { ct } + \mathrm { d }\), where \(a , b , c\) and \(d\) are constants to be determined. Subsequently it is found that when \(\mathrm { t } = 40 , \mathrm { M } = 78.7\) and when \(\mathrm { t } = 50 , \mathrm { M } = 80.05\).
  3. Determine whether the model is a good fit for these data.
  4. By completing the extended copy of Fig. 7.2 in the Printed Answer Booklet, explain why a quartic model may be more appropriate for the data.
  5. Refine the doctor's model to include a quartic term.
  6. Explain whether the new model for Sam's mass is likely to be appropriate over a longer period of time.