4 Fig. 4.1 shows part of the graph of \(y = e ^ { x } - x ^ { 2 } - x - 1.1\).
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f8c78ab8-7daa-4d6f-9bb5-093a46c590b8-04_805_789_299_274}
\captionsetup{labelformat=empty}
\caption{Fig. 4.1}
\end{figure}
The equation \(\mathrm { e } ^ { x } - x ^ { 2 } - x - 1.1 = 0\) has a root \(\alpha\) such that \(1 < \alpha < 2\).
Ali is considering using the Newton-Raphson method to find \(\alpha\). Ali could use a starting value of \(x _ { 0 } = 1\) or a starting value of \(x _ { 0 } = 2\).
- Without doing any calculations, explain whether Ali should use a starting value of \(x _ { 0 } = 1\) or a starting value of \(x _ { 0 } = 2\), or whether using either starting value would work equally well.
Ali is also considering using the method of fixed point iteration to find \(\alpha\). Ali could use a starting value of \(x _ { 0 } = 1\) or a starting value of \(x _ { 0 } = 2\).
Fig. 4.2 shows parts of the graphs of \(y = x\) and \(y = \ln \left( x ^ { 2 } + x + 1.1 \right)\).
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f8c78ab8-7daa-4d6f-9bb5-093a46c590b8-04_819_1011_1818_255}
\captionsetup{labelformat=empty}
\caption{Fig. 4.2}
\end{figure} - Without doing any calculations, explain whether Ali should use a starting value of \(x _ { 0 } = 1\) or a starting value of \(x _ { 0 } = 2\) or whether either starting value would work equally well.
Ali used one of the above methods to find a sequence of approximations to \(\alpha\). These are shown, together with some further analysis in the associated spreadsheet output in Fig. 4.3.
\begin{table}[h]
| | M | N | O | |
| \(r\) | \(\mathrm { X } _ { \mathrm { r } }\) | | | |
| 4 | 0 | 2 | | | |
| 5 | 1 | 1.879008 | - 0.121 | | |
| 6 | 2 | 1.858143 | - 0.021 | 0.172 | |
| 7 | 3 | 1.857565 | \(- 6 \mathrm { E } - 04\) | 0.028 | |
| 8 | 4 | 1.857564 | \(- 4 \mathrm { E } - 07\) | \(8 \mathrm { E } - 04\) | |
| 9 | 5 | 1.857564 | \(- 2 \mathrm { E } - 13\) | \(6 \mathrm { E } - 07\) | |
\captionsetup{labelformat=empty}
\caption{Fig. 4.3}
\end{table}
The formula in cell N5 is =M5-M4
and the formula in cell O6 is =N6/N5
equivalent formulae are in cells N6 to N9 and O7 to O9 respectively. - State what is being calculated in the following columns of the spreadsheet.
- Column N
- Column O
- Explain whether the values in column O suggest that Ali used the Newton-Raphson method or the iterative formula \(\mathrm { x } _ { \mathrm { n } + 1 } = \ln \left( \mathrm { x } _ { \mathrm { n } } ^ { 2 } + \mathrm { x } _ { \mathrm { n } } + 1.1 \right)\) to find this sequence of approximations to \(\alpha\).