OCR MEI Further Numerical Methods 2022 June — Question 4

Exam BoardOCR MEI
ModuleFurther Numerical Methods (Further Numerical Methods)
Year2022
SessionJune
TopicFixed Point Iteration

4 Fig. 4.1 shows part of the graph of \(y = e ^ { x } - x ^ { 2 } - x - 1.1\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f8c78ab8-7daa-4d6f-9bb5-093a46c590b8-04_805_789_299_274} \captionsetup{labelformat=empty} \caption{Fig. 4.1}
\end{figure} The equation \(\mathrm { e } ^ { x } - x ^ { 2 } - x - 1.1 = 0\) has a root \(\alpha\) such that \(1 < \alpha < 2\).
Ali is considering using the Newton-Raphson method to find \(\alpha\). Ali could use a starting value of \(x _ { 0 } = 1\) or a starting value of \(x _ { 0 } = 2\).
  1. Without doing any calculations, explain whether Ali should use a starting value of \(x _ { 0 } = 1\) or a starting value of \(x _ { 0 } = 2\), or whether using either starting value would work equally well. Ali is also considering using the method of fixed point iteration to find \(\alpha\). Ali could use a starting value of \(x _ { 0 } = 1\) or a starting value of \(x _ { 0 } = 2\). Fig. 4.2 shows parts of the graphs of \(y = x\) and \(y = \ln \left( x ^ { 2 } + x + 1.1 \right)\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{f8c78ab8-7daa-4d6f-9bb5-093a46c590b8-04_819_1011_1818_255} \captionsetup{labelformat=empty} \caption{Fig. 4.2}
    \end{figure}
  2. Without doing any calculations, explain whether Ali should use a starting value of \(x _ { 0 } = 1\) or a starting value of \(x _ { 0 } = 2\) or whether either starting value would work equally well. Ali used one of the above methods to find a sequence of approximations to \(\alpha\). These are shown, together with some further analysis in the associated spreadsheet output in Fig. 4.3. \begin{table}[h]
    MNO
    \(r\)\(\mathrm { X } _ { \mathrm { r } }\)
    402
    511.879008- 0.121
    621.858143- 0.0210.172
    731.857565\(- 6 \mathrm { E } - 04\)0.028
    841.857564\(- 4 \mathrm { E } - 07\)\(8 \mathrm { E } - 04\)
    951.857564\(- 2 \mathrm { E } - 13\)\(6 \mathrm { E } - 07\)
    \captionsetup{labelformat=empty} \caption{Fig. 4.3}
    \end{table} The formula in cell N5 is =M5-M4
    and the formula in cell O6 is =N6/N5
    equivalent formulae are in cells N6 to N9 and O7 to O9 respectively.
  3. State what is being calculated in the following columns of the spreadsheet.
    1. Column N
    2. Column O
  4. Explain whether the values in column O suggest that Ali used the Newton-Raphson method or the iterative formula \(\mathrm { x } _ { \mathrm { n } + 1 } = \ln \left( \mathrm { x } _ { \mathrm { n } } ^ { 2 } + \mathrm { x } _ { \mathrm { n } } + 1.1 \right)\) to find this sequence of approximations to \(\alpha\).