OCR MEI Further Numerical Methods 2022 June — Question 3

Exam BoardOCR MEI
ModuleFurther Numerical Methods (Further Numerical Methods)
Year2022
SessionJune
TopicFixed Point Iteration

3 The equation \(\mathrm { f } ( x ) = \sin ^ { - 1 } ( x ) - x + 0.1 = 0\) has a root \(\alpha\) such that \(- 1 < \alpha < 0\).
Alex uses an iterative method to find a sequence of approximations to \(\alpha\). Some of the associated spreadsheet output is shown in the table.
CDE
4\(r\)\(\mathrm { x } _ { \mathrm { r } }\)\(\mathrm { f } \left( \mathrm { x } _ { \mathrm { r } } \right)\)
50- 1- 0.4707963
61- 0.8- 0.0272952
72- 0.787691- 0.0193610
83- 0.7576546- 0.0020574
94- 0.7540834- 0.0001740
105
116
The formula in cell D7 is $$= ( \mathrm { D } 5 * \mathrm { E } 6 - \mathrm { D } 6 * \mathrm { E } 5 ) / ( \mathrm { E } 6 - \mathrm { E } 5 )$$ and equivalent formulae are in cells D8 and D9.
  1. State the method being used.
  2. Use the values in the spreadsheet to calculate \(x _ { 5 }\) and \(x _ { 6 }\), giving your answers correct to 7 decimal places.
  3. State the value of \(\alpha\) as accurately as you can, justifying the precision quoted. Alex uses a calculator to check the value in cell D9, his result is - 0.7540832686 .
  4. Explain why this is different to the value displayed in cell D9. The value displayed in cell E11 in Alex's spreadsheet is \(- 1.4629 \mathrm { E } - 09\).
  5. Write this value in standard mathematical notation.