OCR MEI Further Numerical Methods 2022 June — Question 2

Exam BoardOCR MEI
ModuleFurther Numerical Methods (Further Numerical Methods)
Year2022
SessionJune
TopicFixed Point Iteration

2 The table shows some values of \(x\) and the associated values of \(y = f ( x )\).
\(x\)2.7533.25
\(\mathrm { f } ( x )\)0.92079911.072858
  1. Calculate an estimate of \(\frac { \mathrm { dy } } { \mathrm { dx } }\) at \(x = 3\) using the forward difference method, giving your answer correct to \(\mathbf { 5 }\) decimal places.
  2. Calculate an estimate of \(\frac { \mathrm { dy } } { \mathrm { dx } }\) at \(x = 3\) using the central difference method, giving your answer correct to \(\mathbf { 5 }\) decimal places.
  3. Explain why your answer to part (b) is likely to be closer than your answer to part (a) to the true value of \(\frac { \mathrm { dy } } { \mathrm { dx } }\) at \(x = 3\). When \(x = 5\) it is given that \(y = 1.4645\) and \(\frac { \mathrm { dy } } { \mathrm { dx } } = 0.1820\), correct to 4 decimal places.
  4. Determine an estimate of the error when \(\mathrm { f } ( 5 )\) is used to estimate \(\mathrm { f } ( 5.024 )\).