6 The matrices \(\mathbf { M }\) and \(\mathbf { N }\) are \(\left( \begin{array} { l l } \lambda & 2
2 & \lambda \end{array} \right)\) and \(\left( \begin{array} { c c } \mu & 1
1 & \mu \end{array} \right)\) respectively, where \(\lambda\) and \(\mu\) are constants.
- Investigate whether \(\mathbf { M }\) and \(\mathbf { N }\) are commutative under multiplication.
- You are now given that \(\mathbf { M N } = \mathbf { I }\).
- Write down a relationship between \(\operatorname { det } \mathbf { M }\) and \(\operatorname { det } \mathbf { N }\).
- Given that \(\lambda > 0\), find the exact values of \(\lambda\) and \(\mu\).
- Hence verify your answer to part (i).