OCR Further Mechanics 2019 June — Question 7

Exam BoardOCR
ModuleFurther Mechanics (Further Mechanics)
Year2019
SessionJune
TopicCircular Motion 2

7
\includegraphics[max width=\textwidth, alt={}, center]{9bc86277-9e6b-41f6-a2c3-94c85e7b1360-4_330_1061_989_267} The flat surface of a smooth solid hemisphere of radius \(r\) is fixed to a horizontal plane on a planet where the acceleration due to gravity is denoted by \(\gamma\). \(O\) is the centre of the flat surface of the hemisphere. A particle \(P\) is held at a point on the surface of the hemisphere such that the angle between \(O P\) and the upward vertical through \(O\) is \(\alpha\), where \(\cos \alpha = \frac { 3 } { 4 }\).
\(P\) is then released from rest. \(F\) is the point on the plane where \(P\) first hits the plane (see diagram).
  1. Find an exact expression for the distance \(O F\). The acceleration due to gravity on and near the surface of the planet Earth is roughly \(6 \gamma\).
  2. Explain whether \(O F\) would increase, decrease or remain unchanged if the action were repeated on the planet Earth. \section*{END OF QUESTION PAPER}