6 Two particles \(A\) and \(B\), of masses \(m \mathrm {~kg}\) and 1 kg respectively, are connected by a light inextensible string of length \(d \mathrm {~m}\) and placed at rest on a smooth horizontal plane a distance of \(\frac { 1 } { 2 } d \mathrm {~m}\) apart. \(B\) is then projected horizontally with speed \(v \mathrm {~ms} ^ { - 1 }\) in a direction perpendicular to \(A B\).
- Show that, at the instant that the string becomes taut, the magnitude of the instantaneous impulse in the string, \(I \mathrm { Ns }\), is given by \(\mathrm { I } = \frac { \sqrt { 3 } \mathrm { mv } } { 2 ( 1 + \mathrm { m } ) }\).
- Find, in terms of \(m\) and \(v\), the kinetic energy of \(B\) at the instant after the string becomes taut. Give your answer as a single algebraic fraction.
- In the case where \(m\) is very large, describe, with justification, the approximate motion of \(B\) after the string becomes taut.