7 Figure 2 shows a network of pipes.
Water from two reservoirs, \(R _ { 1 }\) and \(R _ { 2 }\), is used to supply three towns, \(T _ { 1 } , T _ { 2 }\) and \(T _ { 3 }\).
In Figure 2, the capacity of each pipe is given by the number not circled on each edge. The numbers in circles represent an initial flow.
- Add a supersource, supersink and appropriate weighted edges to Figure 2. (2 marks)
- Use the initial flow and the labelling procedure on Figure 3 to find the maximum flow through the network.
You should indicate any flow augmenting routes in the table and modify the potential increases and decreases of the flow on the network.
- State the value of the maximum flow and, on Figure 4, illustrate a possible flow along each edge corresponding to this maximum flow.
- Confirm that you have a maximum flow by finding a cut of the same value. List the edges of your cut.
\begin{figure}[h]
\captionsetup{labelformat=empty}
\caption{Figure 2}
\includegraphics[alt={},max width=\textwidth]{5123be51-168e-4487-8cd3-33aee9e3b23f-18_1077_1246_1475_395}
\end{figure}
\begin{figure}[h]
\captionsetup{labelformat=empty}
\caption{Figure 3}
\includegraphics[alt={},max width=\textwidth]{5123be51-168e-4487-8cd3-33aee9e3b23f-19_1049_1264_308_386}
\end{figure}
\begin{figure}[h]
\captionsetup{labelformat=empty}
\caption{Figure 4}
\includegraphics[alt={},max width=\textwidth]{5123be51-168e-4487-8cd3-33aee9e3b23f-19_835_1011_1738_171}
\end{figure}
\includegraphics[max width=\textwidth, alt={}]{5123be51-168e-4487-8cd3-33aee9e3b23f-19_688_524_1448_1302}
\includegraphics[max width=\textwidth, alt={}]{5123be51-168e-4487-8cd3-33aee9e3b23f-20_2256_1707_221_153}