AQA D2 2013 June — Question 3

Exam BoardAQA
ModuleD2 (Decision Mathematics 2)
Year2013
SessionJune
TopicPermutations & Arrangements
TypeOptimization assignment problems

3 The table shows the times taken, in minutes, by five people, \(A , B , C , D\) and \(E\), to carry out the tasks \(V , W , X , Y\) and \(Z\).
\(\boldsymbol { A }\)\(\boldsymbol { B }\)\(\boldsymbol { C }\)\(\boldsymbol { D }\)\(\boldsymbol { E }\)
Task \(\boldsymbol { V }\)10011011210295
Task \(\boldsymbol { W }\)125130110120115
Task \(\boldsymbol { X }\)105110101108120
Task \(\boldsymbol { Y }\)115115120135110
Task \(\boldsymbol { Z }\)1009899100102
Each of the five tasks is to be given to a different one of the five people so that the total time for the five tasks is minimised. The Hungarian algorithm is to be used.
  1. By reducing the columns first, and then the rows, show that the new table of values is
    0121320
    14210\(k\)9
    3100623
    026200
    00007
    and state the value of the constant \(k\).
  2. Show that the zeros in the table in part (a) can be covered with four lines. Use augmentation twice to produce a table where five lines are required to cover the zeros.
  3. Hence find the possible ways of allocating the five tasks to the five people to achieve the minimum total time.
  4. Find the minimum total time.