CAIE FP1 2015 June — Question 11 EITHER

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2015
SessionJune
Topic3x3 Matrices

The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix \(\mathbf { M }\), where $$\mathbf { M } = \left( \begin{array} { r r r r } 1 & 2 & 3 & 4
1 & - 1 & 2 & 3
1 & - 3 & 3 & 5
1 & 4 & 2 & 2 \end{array} \right)$$ The range space of T is denoted by \(V\).
  1. Determine the dimension of \(V\).
  2. Show that the vectors \(\left( \begin{array} { l } 1
    1
    1
    1 \end{array} \right) , \left( \begin{array} { r } 2
    - 1
    - 3
    4 \end{array} \right) , \left( \begin{array} { l } 3
    2
    3
    2 \end{array} \right)\) are a basis of \(V\). The set of elements of \(\mathbb { R } ^ { 4 }\) which do not belong to \(V\) is denoted by \(W\).
  3. State, with a reason, whether \(W\) is a vector space.
  4. Show that if the vector \(\left( \begin{array} { l } x
    y
    z
    t \end{array} \right)\) belongs to \(W\) then \(x + y \neq z + t\).