8 A line, passing through the point \(A ( 3,0,2 )\), has vector equation \(\mathbf { r } = 3 \mathbf { i } + 2 \mathbf { k } + \lambda ( 2 \mathbf { i } + \mathbf { j } - 2 \mathbf { k } )\). It meets the plane \(\Pi\), which has equation \(\mathbf { r } \cdot ( \mathbf { i } + 2 \mathbf { j } + \mathbf { k } ) = 3\), at the point \(P\). Find the coordinates of \(P\).
Write down a vector \(\mathbf { n }\) which is perpendicular to \(\Pi\), and calculate the vector \(\mathbf { w }\), where
$$\mathbf { w } = \mathbf { n } \times ( 2 \mathbf { i } + \mathbf { j } - 2 \mathbf { k } )$$
The point \(Q\) lies in \(\Pi\) and is the foot of the perpendicular from \(A\) to \(\Pi\). Use the vector \(\mathbf { w }\) to determine an equation of the line \(P Q\) in the form \(\mathbf { r } = \mathbf { u } + \mu \mathbf { v }\).