CAIE FP1 (Further Pure Mathematics 1) 2015 June

Question 1
View details
1 The quartic equation \(x ^ { 4 } - p x ^ { 2 } + q x - r = 0\), where \(p , q\) and \(r\) are real constants, has two pairs of equal roots. Show that \(p ^ { 2 } + 4 r = 0\) and state the value of \(q\).
Question 2
View details
2 The curve \(C\) has polar equation \(r = \mathrm { e } ^ { 4 \theta }\) for \(0 \leqslant \theta \leqslant \alpha\), where \(\alpha\) is measured in radians. The length of \(C\) is 2015 . Find the value of \(\alpha\).
Question 3
View details
3 Prove by mathematical induction that, for all positive integers \(n , \sum _ { r = 1 } ^ { n } \frac { 1 } { ( 2 r ) ^ { 2 } - 1 } = \frac { n } { 2 n + 1 }\). State the value of \(\sum _ { r = 1 } ^ { \infty } \frac { 1 } { ( 2 r ) ^ { 2 } - 1 }\).
Question 4
View details
4 Use the formula for \(\tan ( A - B )\) in the List of Formulae (MF10) to show that $$\tan ^ { - 1 } ( x + 1 ) - \tan ^ { - 1 } ( x - 1 ) = \tan ^ { - 1 } \left( \frac { 2 } { x ^ { 2 } } \right)$$ Deduce the sum to \(n\) terms of the series $$\tan ^ { - 1 } \left( \frac { 2 } { 1 ^ { 2 } } \right) + \tan ^ { - 1 } \left( \frac { 2 } { 2 ^ { 2 } } \right) + \tan ^ { - 1 } \left( \frac { 2 } { 3 ^ { 2 } } \right) + \ldots .$$
Question 5
View details
5 Let \(I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \frac { \sin 2 n \theta } { \cos \theta } \mathrm {~d} \theta\), where \(n\) is a non-negative integer.
  1. Use the identity \(\sin P + \sin Q \equiv 2 \sin \frac { 1 } { 2 } ( P + Q ) \cos \frac { 1 } { 2 } ( P - Q )\) to show that $$I _ { n } + I _ { n - 1 } = \frac { 2 } { 2 n - 1 } , \text { for all positive integers } n$$
  2. Find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \frac { \sin 8 \theta } { \cos \theta } d \theta\).
Question 6
View details
6 Let \(z = \cos \theta + \mathrm { i } \sin \theta\). Use the binomial expansion of \(( 1 + z ) ^ { n }\), where \(n\) is a positive integer, to show that $$\binom { n } { 1 } \cos \theta + \binom { n } { 2 } \cos 2 \theta + \ldots + \binom { n } { n } \cos n \theta = 2 ^ { n } \cos ^ { n } \left( \frac { 1 } { 2 } \theta \right) \cos \left( \frac { 1 } { 2 } n \theta \right) - 1$$ Find $$\binom { n } { 1 } \sin \theta + \binom { n } { 2 } \sin 2 \theta + \ldots + \binom { n } { n } \sin n \theta$$
Question 7
View details
7 The curve \(C\) has equation \(x ^ { 2 } + 2 x y - 4 y ^ { 2 } + 20 = 0\). Show that if the tangent to \(C\) at the point \(( x , y )\) is parallel to the \(x\)-axis then \(x + y = 0\). Hence find the coordinates of the stationary points on \(C\), and determine their nature.
Question 8
View details
8 A line, passing through the point \(A ( 3,0,2 )\), has vector equation \(\mathbf { r } = 3 \mathbf { i } + 2 \mathbf { k } + \lambda ( 2 \mathbf { i } + \mathbf { j } - 2 \mathbf { k } )\). It meets the plane \(\Pi\), which has equation \(\mathbf { r } \cdot ( \mathbf { i } + 2 \mathbf { j } + \mathbf { k } ) = 3\), at the point \(P\). Find the coordinates of \(P\). Write down a vector \(\mathbf { n }\) which is perpendicular to \(\Pi\), and calculate the vector \(\mathbf { w }\), where $$\mathbf { w } = \mathbf { n } \times ( 2 \mathbf { i } + \mathbf { j } - 2 \mathbf { k } )$$ The point \(Q\) lies in \(\Pi\) and is the foot of the perpendicular from \(A\) to \(\Pi\). Use the vector \(\mathbf { w }\) to determine an equation of the line \(P Q\) in the form \(\mathbf { r } = \mathbf { u } + \mu \mathbf { v }\).
Question 9
View details
9 Find the particular solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } - 3 \frac { \mathrm {~d} x } { \mathrm {~d} t } - 10 x = 2 \sin t - 3 \cos t$$ given that, when \(t = 0 , x = 3.3\) and \(\frac { \mathrm { d } x } { \mathrm {~d} t } = 0.9\).
Question 10
View details
10 The curve \(C\) has equation \(y = \frac { 4 x ^ { 2 } - 3 x } { x ^ { 2 } + 1 }\). Verify that the equation of \(C\) may be written in the form \(y = - \frac { 1 } { 2 } + \frac { ( 3 x - 1 ) ^ { 2 } } { 2 \left( x ^ { 2 } + 1 \right) }\) and also in the form \(y = \frac { 9 } { 2 } - \frac { ( x + 3 ) ^ { 2 } } { 2 \left( x ^ { 2 } + 1 \right) }\). Hence show that \(- \frac { 1 } { 2 } \leqslant y \leqslant \frac { 9 } { 2 }\). Without differentiating, write down the coordinates of the turning points of \(C\). State the equation of the asymptote of \(C\). Sketch the graph of \(C\), stating the coordinates of the intersections with the coordinate axes and the asymptote.
Question 11 EITHER
View details
The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix \(\mathbf { M }\), where $$\mathbf { M } = \left( \begin{array} { r r r r } 1 & 2 & 3 & 4
1 & - 1 & 2 & 3
1 & - 3 & 3 & 5
1 & 4 & 2 & 2 \end{array} \right)$$ The range space of T is denoted by \(V\).
  1. Determine the dimension of \(V\).
  2. Show that the vectors \(\left( \begin{array} { l } 1
    1
    1
    1 \end{array} \right) , \left( \begin{array} { r } 2
    - 1
    - 3
    4 \end{array} \right) , \left( \begin{array} { l } 3
    2
    3
    2 \end{array} \right)\) are a basis of \(V\). The set of elements of \(\mathbb { R } ^ { 4 }\) which do not belong to \(V\) is denoted by \(W\).
  3. State, with a reason, whether \(W\) is a vector space.
  4. Show that if the vector \(\left( \begin{array} { l } x
    y
    z
    t \end{array} \right)\) belongs to \(W\) then \(x + y \neq z + t\).
Question 11 OR
View details
One of the eigenvalues of the matrix \(\mathbf { M }\), where $$\mathbf { M } = \left( \begin{array} { r r r } 3 & - 4 & 2
- 4 & \alpha & 6
2 & 6 & - 2 \end{array} \right)$$ is - 9 . Find the value of \(\alpha\). Find
  1. the other two eigenvalues, \(\lambda _ { 1 }\) and \(\lambda _ { 2 }\), of \(\mathbf { M }\), where \(\lambda _ { 1 } > \lambda _ { 2 }\),
  2. corresponding eigenvectors for all three eigenvalues of \(\mathbf { M }\). It is given that \(\mathbf { x } = a \mathbf { e } _ { 1 } + b \mathbf { e } _ { 2 }\), where \(\mathbf { e } _ { 1 }\) and \(\mathbf { e } _ { 2 }\) are eigenvectors of \(\mathbf { M }\) corresponding to the eigenvalues \(\lambda _ { 1 }\) and \(\lambda _ { 2 }\) respectively, and \(a\) and \(b\) are scalar constants. Show that \(\mathbf { M x } = p \mathbf { e } _ { 1 } + q \mathbf { e } _ { 2 }\), expressing \(p\) and \(q\) in terms of \(a\) and \(b\). \footnotetext{Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at \href{http://www.cie.org.uk}{www.cie.org.uk} after the live examination series. Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }