| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2015 |
| Session | June |
| Topic | Sequences and series, recurrence and convergence |
4 Use the formula for \(\tan ( A - B )\) in the List of Formulae (MF10) to show that
$$\tan ^ { - 1 } ( x + 1 ) - \tan ^ { - 1 } ( x - 1 ) = \tan ^ { - 1 } \left( \frac { 2 } { x ^ { 2 } } \right)$$
Deduce the sum to \(n\) terms of the series
$$\tan ^ { - 1 } \left( \frac { 2 } { 1 ^ { 2 } } \right) + \tan ^ { - 1 } \left( \frac { 2 } { 2 ^ { 2 } } \right) + \tan ^ { - 1 } \left( \frac { 2 } { 3 ^ { 2 } } \right) + \ldots .$$