CAIE FP1 2015 June — Question 4

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2015
SessionJune
TopicSequences and series, recurrence and convergence

4 Use the formula for \(\tan ( A - B )\) in the List of Formulae (MF10) to show that $$\tan ^ { - 1 } ( x + 1 ) - \tan ^ { - 1 } ( x - 1 ) = \tan ^ { - 1 } \left( \frac { 2 } { x ^ { 2 } } \right)$$ Deduce the sum to \(n\) terms of the series $$\tan ^ { - 1 } \left( \frac { 2 } { 1 ^ { 2 } } \right) + \tan ^ { - 1 } \left( \frac { 2 } { 2 ^ { 2 } } \right) + \tan ^ { - 1 } \left( \frac { 2 } { 3 ^ { 2 } } \right) + \ldots .$$