7 With respect to the origin \(O\), the points \(A\) and \(B\) have position vectors given by \(\overrightarrow { O A } = \mathbf { i } + 2 \mathbf { j } + 2 \mathbf { k }\) and \(\overrightarrow { O B } = 3 \mathbf { i } + 4 \mathbf { j }\). The point \(P\) lies on the line \(A B\) and \(O P\) is perpendicular to \(A B\).
- Find a vector equation for the line \(A B\).
- Find the position vector of \(P\).
- Find the equation of the plane which contains \(A B\) and which is perpendicular to the plane \(O A B\), giving your answer in the form \(a x + b y + c z = d\).