CAIE P3 2010 November — Question 6

Exam BoardCAIE
ModuleP3 (Pure Mathematics 3)
Year2010
SessionNovember
TopicComplex Numbers Argand & Loci

6 The complex number \(z\) is given by $$z = ( \sqrt { } 3 ) + \mathrm { i } .$$
  1. Find the modulus and argument of \(z\).
  2. The complex conjugate of \(z\) is denoted by \(z ^ { * }\). Showing your working, express in the form \(x + \mathrm { i } y\), where \(x\) and \(y\) are real,
    (a) \(2 z + z ^ { * }\),
    (b) \(\frac { \mathrm { i } z ^ { * } } { z }\).
  3. On a sketch of an Argand diagram with origin \(O\), show the points \(A\) and \(B\) representing the complex numbers \(z\) and \(\mathrm { i } z ^ { * }\) respectively. Prove that angle \(A O B = \frac { 1 } { 6 } \pi\).