5 Let \(I = \int _ { 0 } ^ { 1 } \frac { x ^ { 2 } } { \sqrt { } \left( 4 - x ^ { 2 } \right) } \mathrm { d } x\).
- Using the substitution \(x = 2 \sin \theta\), show that
$$I = \int _ { 0 } ^ { \frac { 1 } { 6 } \pi } 4 \sin ^ { 2 } \theta \mathrm {~d} \theta$$
- Hence find the exact value of \(I\).