CAIE FP1 (Further Pure Mathematics 1) 2017 Specimen

Question 1
View details
1 The curve \(C\) is defined parametrically by $$x = 2 \cos ^ { 3 } t \quad \text { and } \quad y = 2 \sin ^ { 3 } t , \quad \text { for } 0 < t < \frac { 1 } { 2 } \pi$$ Show that, at the point with parameter \(t\), $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = \frac { 1 } { 6 } \sec ^ { 4 } t \operatorname { cosec } t$$
Question 2
View details
2 Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 4 \frac { \mathrm {~d} x } { \mathrm {~d} t } + 4 x = 7 - 2 t ^ { 2 }$$
Question 3
View details
3 Given that \(a\) is a constant, prove by mathematical induction that, for every positive integer \(n\), $$\frac { \mathrm { d } ^ { n } } { \mathrm {~d} x ^ { n } } \left( x \mathrm { e } ^ { a x } \right) = n a ^ { n - 1 } \mathrm { e } ^ { a x } + a ^ { n } x \mathrm { e } ^ { a x }$$
Question 4
View details
4 The sequence \(a _ { 1 } , a _ { 2 } , a _ { 3 } , \ldots\) is such that, for all positive integers \(n\), $$a _ { n } = \frac { n + 5 } { \sqrt { } \left( n ^ { 2 } - n + 1 \right) } - \frac { n + 6 } { \sqrt { } \left( n ^ { 2 } + n + 1 \right) }$$ The sum \(\sum _ { n = 1 } ^ { N } a _ { n }\) is denoted by \(S _ { N }\).
  1. Find the value of \(S _ { 30 }\) correct to 3 decimal places.
  2. Find the least value of \(N\) for which \(S _ { N } > 4.9\).
Question 5 5 marks
View details
5 The cubic equation \(x ^ { 3 } + p x ^ { 2 } + q x + r = 0\), where \(p , q\) and \(r\) are integers, has roots \(\alpha , \beta\) and \(\gamma\), such that $$\begin{aligned} \alpha + \beta + \gamma & = 15
\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } & = 83 \end{aligned}$$
  1. Write down the value of \(p\) and find the value of \(q\).
  2. Given that \(\alpha , \beta\) and \(\gamma\) are all real and that \(\alpha \beta + \alpha \gamma = 36\), find \(\alpha\) and hence find the value of \(r\). [5]
Question 6
View details
6 The matrix A, where $$\mathbf { A } = \left( \begin{array} { r r r } 1 & 0 & 0
10 & - 7 & 10
7 & - 5 & 8 \end{array} \right)$$ has eigenvalues 1 and 3 .
  1. Find corresponding eigenvectors.
    It is given that \(\left( \begin{array} { l } 0
    2
    1 \end{array} \right)\) is an eigenvector of \(\mathbf { A }\).
  2. Find the corresponding eigenvalue.
  3. Find a diagonal matrix \(\mathbf { D }\) and matrices \(\mathbf { P }\) and \(\mathbf { P } ^ { - 1 }\) such that \(\mathbf { P } ^ { - 1 } \mathbf { A P } = \mathbf { D }\).
Question 7
View details
7 The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix \(\mathbf { M }\), where $$\mathbf { M } = \left( \begin{array} { r r r r } 1 & - 2 & - 3 & 1
3 & - 5 & - 7 & 7
5 & - 9 & - 13 & 9
7 & - 13 & - 19 & 11 \end{array} \right)$$
  1. Find the rank of \(\mathbf { M }\) and a basis for the null space of T .
  2. The vector \(\left( \begin{array} { l } 1
    2
    3
    4 \end{array} \right)\) is denoted by \(\mathbf { e }\). Show that there is a solution of the equation \(\mathbf { M x } = \mathbf { M e }\) of the form \(\mathbf { x } = \left( \begin{array} { c } a
    b
    - 1
    - 1 \end{array} \right)\), where the constants \(a\) and \(b\) are to be found.
Question 8
View details
8 The curve \(C\) has equation \(y = \frac { 2 x ^ { 2 } + k x } { x + 1 }\), where \(k\) is a constant.
  1. Find the set of values of \(k\) for which \(C\) has no stationary points.
  2. For the case \(k = 4\), find the equations of the asymptotes of \(C\) and sketch \(C\), indicating the coordinates of the points where \(C\) intersects the coordinate axes.
Question 9 6 marks
View details
9 It is given that \(I _ { n } = \int _ { 1 } ^ { \mathrm { e } } ( \ln x ) ^ { n } \mathrm {~d} x\) for \(n \geqslant 0\).
  1. Show that $$I _ { n } = ( n - 1 ) \left[ I _ { n - 2 } - I _ { n - 1 } \right] \text { for } n \geqslant 2 .$$
  2. Hence find, in an exact form, the mean value of \(( \ln x ) ^ { 3 }\) with respect to \(x\) over the interval \(1 \leqslant x \leqslant \mathrm { e }\). [6]
Question 10 3 marks
View details
10
  1. Using de Moivre's theorem, show that $$\tan 5 \theta = \frac { 5 \tan \theta - 10 \tan ^ { 3 } \theta + \tan ^ { 5 } \theta } { 1 - 10 \tan ^ { 2 } \theta + 5 \tan ^ { 4 } \theta } .$$
  2. Hence show that the equation \(x ^ { 2 } - 10 x + 5 = 0\) has roots \(\tan ^ { 2 } \left( \frac { 1 } { 5 } \pi \right)\) and \(\tan ^ { 2 } \left( \frac { 2 } { 5 } \pi \right)\).
  3. Deduce a quadratic equation, with integer coefficients, having roots \(\sec ^ { 2 } \left( \frac { 1 } { 5 } \pi \right)\) and \(\sec ^ { 2 } \left( \frac { 2 } { 5 } \pi \right)\). [3]
Question 11 EITHER
View details
The points \(A , B\) and \(C\) have position vectors \(\mathbf { i } , 2 \mathbf { j }\) and \(4 \mathbf { k }\) respectively, relative to an origin \(O\). The point \(N\) is the foot of the perpendicular from \(O\) to the plane \(A B C\). The point \(P\) on the line-segment \(O N\) is such that \(O P = \frac { 3 } { 4 } O N\). The line \(A P\) meets the plane \(O B C\) at \(Q\).
  1. Find a vector perpendicular to the plane \(A B C\) and show that the length of \(O N\) is \(\frac { 4 } { \sqrt { } ( 21 ) }\).
  2. Find the position vector of the point \(Q\).
  3. Show that the acute angle between the planes \(A B C\) and \(A B Q\) is \(\cos ^ { - 1 } \left( \frac { 2 } { 3 } \right)\).
Question 11 OR
View details
The curve \(C\) has polar equation \(r = a ( 1 - \cos \theta )\) for \(0 \leqslant \theta < 2 \pi\).
  1. Sketch \(C\).
  2. Find the area of the region enclosed by the arc of \(C\) for which \(\frac { 1 } { 2 } \pi \leqslant \theta \leqslant \frac { 3 } { 2 } \pi\), the half-line \(\theta = \frac { 1 } { 2 } \pi\) and the half-line \(\theta = \frac { 3 } { 2 } \pi\).
  3. Show that $$\left( \frac { \mathrm { d } s } { \mathrm {~d} \theta } \right) ^ { 2 } = 4 a ^ { 2 } \sin ^ { 2 } \left( \frac { 1 } { 2 } \theta \right)$$ where \(s\) denotes arc length, and find the length of the arc of \(C\) for which \(\frac { 1 } { 2 } \pi \leqslant \theta \leqslant \frac { 3 } { 2 } \pi\).